An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data

被引:172
|
作者
Shiraishi, Yuichi [1 ]
Sato, Yusuke [2 ,3 ]
Chiba, Kenichi [1 ]
Okuno, Yusuke [2 ]
Nagata, Yasunobu [2 ]
Yoshida, Kenichi [2 ]
Shiba, Norio [2 ,4 ]
Hayashi, Yasuhide [4 ]
Kume, Haruki [3 ]
Homma, Yukio [3 ]
Sanada, Masashi [2 ]
Ogawa, Seishi [2 ]
Miyano, Satoru [1 ]
机构
[1] Univ Tokyo, Lab DNA Informat Anal, Ctr Human Genome, Inst Med Sci,Minato Ku, Tokyo 1088639, Japan
[2] Univ Tokyo, Canc Genom Project, Grad Sch Med, Bunkyo Ku, Tokyo 1138655, Japan
[3] Univ Tokyo, Dept Urol, Grad Sch Med, Bunkyo Ku, Tokyo 1138655, Japan
[4] Gunma Childrens Med Ctr, Dept Hematol Oncol, Gunma 3770061, Japan
关键词
ALIGNMENT; EVOLUTION; VARIANTS;
D O I
10.1093/nar/gkt126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in high-throughput sequencing technologies have enabled a comprehensive dissection of the cancer genome clarifying a large number of somatic mutations in a wide variety of cancer types. A number of methods have been proposed for mutation calling based on a large amount of sequencing data, which is accomplished in most cases by statistically evaluating the difference in the observed allele frequencies of possible single nucleotide variants between tumours and paired normal samples. However, an accurate detection of mutations remains a challenge under low sequencing depths or tumour contents. To overcome this problem, we propose a novel method, Empirical Bayesian mutation Calling ( ext-link-type="uri" xlink:href="https://github.com/friend1ws/EBCall" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/friend1ws/EBCall), for detecting somatic mutations. Unlike previous methods, the proposed method discriminates somatic mutations from sequencing errors based on an empirical Bayesian framework, where the model parameters are estimated using sequencing data from multiple non-paired normal samples. Using 13 whole-exome sequencing data with 87.5-206.3 mean sequencing depths, we demonstrate that our method not only outperforms several existing methods in the calling of mutations with moderate allele frequencies but also enables accurate calling of mutations with low allele frequencies (10%) harboured within a minor tumour subpopulation, thus allowing for the deciphering of fine substructures within a tumour specimen.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Bayesian Network Algorithm for the Identification of Cancer Somatic Mutations in the Lack of Normal Tissue from Targeted High-throughput Sequencing Data
    De La Vega, F. M.
    Irvine, S.
    Ware, D.
    Gaastra, K.
    Pouliot, Y.
    Trigg, L.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (02): : S21 - S21
  • [42] Assessment of a Somatic Mutation Detection Pipeline Using a Simulated Tumor Genome
    Li, Z.
    Zhang, R.
    Li, J.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 958 - 959
  • [43] A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data
    Bertl, Johanna
    Guo, Qianyun
    Juul, Malene
    Besenbacher, Soren
    Nielsen, Morten Muhlig
    Hornshoj, Henrik
    Pedersen, Jakob Skou
    Hobolth, Asger
    BMC BIOINFORMATICS, 2018, 19
  • [44] A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data
    Johanna Bertl
    Qianyun Guo
    Malene Juul
    Søren Besenbacher
    Morten Muhlig Nielsen
    Henrik Hornshøj
    Jakob Skou Pedersen
    Asger Hobolth
    BMC Bioinformatics, 19
  • [45] Somatic mutation profiling of follicular thyroid cancer by next generation sequencing
    Swierniak, Michal
    Pfeifer, Aleksandra
    Stokowy, Tomasz
    Rusinek, Dagmara
    Chekan, Mykola
    Lange, Dariusz
    Krajewska, Jolanta
    Oczko-Wojciechowska, Malgorzata
    Czarniecka, Agnieszka
    Jarzab, Michal
    Jarzab, Barbara
    Wojtas, Bartosz
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2016, 433 (0C) : 130 - 137
  • [46] Somatic mutation profiling of colorectal cancer by targeted next generation sequencing
    Youssef, Amira Salah El-Din
    Moustafa, Ahmed
    Touny, Ahmed Osama
    Hassan, Zeinab K.
    Eldin, Mohammed Mohey
    Lotfy, Mai M.
    Nassar, Auhood
    Sayed, Ola
    Zekri, Abdel-Rahman N.
    CANCER RESEARCH, 2020, 80 (16)
  • [47] A Validation Framework for Somatic Copy Number Detection in Targeted Sequencing Panels
    Chandramohan, Raghu
    Reuther, Jacquelyn
    Gandhi, Ilavarasi
    Voicu, Horatiu
    Alvarez, Karla R.
    Plon, Sharon E.
    Lopez-Terrada, Dolores H.
    Fisher, Kevin E.
    Parsons, D. Williams
    Roy, Angshumoy
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2022, 24 (07): : 760 - 774
  • [48] CAMStool: Cancer-associated somatic mutation selection tool for cancer risk prediction in whole-genome data
    Kim, Jae-Yoon
    Park, Seung-Jin
    Park, Seong-Hwan
    Kim, Seon-Kyu
    CANCER RESEARCH, 2024, 84 (06)
  • [49] Spatial genome organization as a framework for somatic alterations in human cancer
    Akdemir, Kadir C.
    Futreal, Andrew
    CANCER RESEARCH, 2018, 78 (13)
  • [50] Cancer subtype identification using somatic mutation data
    Kuijjer, Marieke Lydia
    Paulson, Joseph Nathaniel
    Salzman, Peter
    Ding, Wei
    Quackenbush, John
    BRITISH JOURNAL OF CANCER, 2018, 118 (11) : 1492 - 1501