An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data

被引:172
|
作者
Shiraishi, Yuichi [1 ]
Sato, Yusuke [2 ,3 ]
Chiba, Kenichi [1 ]
Okuno, Yusuke [2 ]
Nagata, Yasunobu [2 ]
Yoshida, Kenichi [2 ]
Shiba, Norio [2 ,4 ]
Hayashi, Yasuhide [4 ]
Kume, Haruki [3 ]
Homma, Yukio [3 ]
Sanada, Masashi [2 ]
Ogawa, Seishi [2 ]
Miyano, Satoru [1 ]
机构
[1] Univ Tokyo, Lab DNA Informat Anal, Ctr Human Genome, Inst Med Sci,Minato Ku, Tokyo 1088639, Japan
[2] Univ Tokyo, Canc Genom Project, Grad Sch Med, Bunkyo Ku, Tokyo 1138655, Japan
[3] Univ Tokyo, Dept Urol, Grad Sch Med, Bunkyo Ku, Tokyo 1138655, Japan
[4] Gunma Childrens Med Ctr, Dept Hematol Oncol, Gunma 3770061, Japan
关键词
ALIGNMENT; EVOLUTION; VARIANTS;
D O I
10.1093/nar/gkt126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in high-throughput sequencing technologies have enabled a comprehensive dissection of the cancer genome clarifying a large number of somatic mutations in a wide variety of cancer types. A number of methods have been proposed for mutation calling based on a large amount of sequencing data, which is accomplished in most cases by statistically evaluating the difference in the observed allele frequencies of possible single nucleotide variants between tumours and paired normal samples. However, an accurate detection of mutations remains a challenge under low sequencing depths or tumour contents. To overcome this problem, we propose a novel method, Empirical Bayesian mutation Calling ( ext-link-type="uri" xlink:href="https://github.com/friend1ws/EBCall" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/friend1ws/EBCall), for detecting somatic mutations. Unlike previous methods, the proposed method discriminates somatic mutations from sequencing errors based on an empirical Bayesian framework, where the model parameters are estimated using sequencing data from multiple non-paired normal samples. Using 13 whole-exome sequencing data with 87.5-206.3 mean sequencing depths, we demonstrate that our method not only outperforms several existing methods in the calling of mutations with moderate allele frequencies but also enables accurate calling of mutations with low allele frequencies (10%) harboured within a minor tumour subpopulation, thus allowing for the deciphering of fine substructures within a tumour specimen.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Practicability of detecting somatic point mutation from RNA high throughput sequencing data
    Sheng, Quanhu
    Zhao, Shilin
    Li, Chung-I
    Shyr, Yu
    Guo, Yan
    GENOMICS, 2016, 107 (05) : 163 - 169
  • [22] Accelerated somatic mutation calling tool for whole-genome and whole-exome sequencing data from heterogenous tumor samples
    Ji, Shuangxi
    Zhu, Tong
    Sethia, Ankit
    Montierth, Matthew D.
    Wang, Wenyi
    CANCER RESEARCH, 2023, 83 (07)
  • [23] Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data
    Ding, Jiarui
    Bashashati, Ali
    Roth, Andrew
    Oloumi, Arusha
    Tse, Kane
    Zeng, Thomas
    Haffari, Gholamreza
    Hirst, Martin
    Marra, Marco A.
    Condon, Anne
    Aparicio, Samuel
    Shah, Sohrab P.
    BIOINFORMATICS, 2012, 28 (02) : 167 - 175
  • [24] Detection of Somatic Structural Aberrations in Targeted Sequencing Data
    Shah, R. H.
    Zehir, A.
    Chandramohan, R.
    Mitchell, T.
    Song, W.
    Oultache, A.
    Benayed, R.
    Hameed, M.
    Nafa, K.
    Cheng, D. T.
    Arcila, M. E.
    Ladanyi, M.
    Berger, M. F.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2014, 16 (06): : 789 - 789
  • [25] Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing
    Fang, Li Tai
    Zhu, Bin
    Zhao, Yongmei
    Chen, Wanqiu
    Yang, Zhaowei
    Kerrigan, Liz
    Langenbach, Kurt
    de Mars, Maryellen
    Lu, Charles
    Idler, Kenneth
    Jacob, Howard
    Zheng, Yuanting
    Ren, Luyao
    Yu, Ying
    Jaeger, Erich
    Schroth, Gary P.
    Abaan, Ogan D.
    Talsania, Keyur
    Lack, Justin
    Shen, Tsai-Wei
    Chen, Zhong
    Stanbouly, Seta
    Tran, Bao
    Shetty, Jyoti
    Kriga, Yuliya
    Meerzaman, Daoud
    Nguyen, Cu
    Petitjean, Virginie
    Sultan, Marc
    Cam, Margaret
    Mehta, Monika
    Hung, Tiffany
    Peters, Eric
    Kalamegham, Rasika
    Sahraeian, Sayed Mohammad Ebrahim
    Mohiyuddin, Marghoob
    Guo, Yunfei
    Yao, Lijing
    Song, Lei
    Lam, Hugo Y. K.
    Drabek, Jiri
    Vojta, Petr
    Maestro, Roberta
    Gasparotto, Daniela
    Koks, Sulev
    Reimann, Ene
    Scherer, Andreas
    Nordlund, Jessica
    Liljedahl, Ulrika
    Jensen, Roderick, V
    NATURE BIOTECHNOLOGY, 2021, 39 (09) : 1151 - +
  • [26] Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing
    Li Tai Fang
    Bin Zhu
    Yongmei Zhao
    Wanqiu Chen
    Zhaowei Yang
    Liz Kerrigan
    Kurt Langenbach
    Maryellen de Mars
    Charles Lu
    Kenneth Idler
    Howard Jacob
    Yuanting Zheng
    Luyao Ren
    Ying Yu
    Erich Jaeger
    Gary P. Schroth
    Ogan D. Abaan
    Keyur Talsania
    Justin Lack
    Tsai-Wei Shen
    Zhong Chen
    Seta Stanbouly
    Bao Tran
    Jyoti Shetty
    Yuliya Kriga
    Daoud Meerzaman
    Cu Nguyen
    Virginie Petitjean
    Marc Sultan
    Margaret Cam
    Monika Mehta
    Tiffany Hung
    Eric Peters
    Rasika Kalamegham
    Sayed Mohammad Ebrahim Sahraeian
    Marghoob Mohiyuddin
    Yunfei Guo
    Lijing Yao
    Lei Song
    Hugo Y. K. Lam
    Jiri Drabek
    Petr Vojta
    Roberta Maestro
    Daniela Gasparotto
    Sulev Kõks
    Ene Reimann
    Andreas Scherer
    Jessica Nordlund
    Ulrika Liljedahl
    Roderick V. Jensen
    Nature Biotechnology, 2021, 39 : 1151 - 1160
  • [27] Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection
    Budurlean, Laura
    Tukaramrao, Diwakar Bastihalli
    Zhang, Lijun
    Dovat, Sinisa
    Broach, James
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (03):
  • [28] Cell-level somatic mutation detection from single-cell RNA sequencing
    Trung Nghia Vu
    Ha-Nam Nguyen
    Calza, Stefano
    Kalari, Krishna R.
    Wang, Liewei
    Pawitan, Yudi
    BIOINFORMATICS, 2019, 35 (22) : 4679 - 4687
  • [29] Interpretable detection of novel human viruses from genome sequencing data
    Bartoszewicz, Jakub M.
    Seidel, Anja
    Renard, Bernhard Y.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01)
  • [30] Single-cell whole-genome sequencing reveals somatic mutation signatures in normal somatic cells predictive of cancer later in life
    Dong, Xiao
    Zhang, Lei
    Lee, Moonsook
    Maslov, Alexander Y.
    Vijg, Jan
    CANCER RESEARCH, 2018, 78 (13)