Alien limit cycles in Lienard equations

被引:12
|
作者
Coll, B. [1 ]
Dumortier, F. [2 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
[2] Univ Hasselt, Dept Wiskunde, B-3590 Diepenbeek, Belgium
关键词
Planar vector field; Lienard equation; Hamiltonian perturbation; Limit cycle; Abelian integral; 2-Saddle cycle; HAMILTONIAN 2-SADDLE CYCLE; MATHEMATICAL PROBLEMS; ABELIAN-INTEGRALS;
D O I
10.1016/j.jde.2012.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at providing an example of a family of polynomial Lienard equations exhibiting an alien limit cycle. This limit cycle is perturbed from a 2-saddle cycle in the boundary of an annulus of periodic orbits given by a Hamiltonian vector field. The Hamiltonian represents a truncated pendulum of degree 4. In comparison to a former polynomial example, not only the equations are simpler but a lot of tedious calculations can be avoided, making the example also interesting with respect to simplicity in treatment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1582 / 1600
页数:19
相关论文
共 50 条
  • [41] Limit cycles in generalized Lienard systems
    Yu, P.
    Han, M.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1048 - 1068
  • [42] Periodic solutions and limit cycles of mixed Lienard-type differential equations
    Adjai, K. K. D.
    Akande, J.
    Yehossou, A. V. R.
    Monsia, M. D.
    AIMS MATHEMATICS, 2022, 7 (08): : 15195 - 15211
  • [43] On the Number of Hyperelliptic Limit Cycles of Lienard Systems
    Qian, Xinjie
    Yang, Jiazhong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [44] LIMIT CYCLES FOR A CUBIC GENERALIZED LIENARD SYSTEM
    Zhao, Jinyuan
    Li, Jun
    Wu, Kuilin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [45] On the Uniqueness of Limit Cycles in a Generalized Lienard System
    Zhang Daoxiang
    Ping Yan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 1191 - 1199
  • [46] Existence of limit cycles for some generalisation of the Lienard equations: the relativistic and the prescribed curvature cases
    Carletti, Timoteo
    Villari, Gabriele
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (02) : 1 - 15
  • [47] Note on limit cycles for m-piecewise discontinuous polynomial Lienard differential equations
    Dong, Guangfeng
    Liu, Changjian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [48] Existence and nonexistence of limit cycles for Lienard-type equations with bounded nonlinearities and φ-Laplacian
    Fujimoto, Kodai
    Yamaoka, Naoto
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
  • [49] Maximum amplitude of limit cycles in Lienard systems
    Turner, N.
    McClintock, P. V. E.
    Stefanovska, A.
    PHYSICAL REVIEW E, 2015, 91 (01)
  • [50] Limit cycles of some polynomial Lienard systems
    Xu, Weijiao
    Li, Cuiping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 367 - 378