Alien limit cycles in Lienard equations

被引:12
|
作者
Coll, B. [1 ]
Dumortier, F. [2 ]
Prohens, R. [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
[2] Univ Hasselt, Dept Wiskunde, B-3590 Diepenbeek, Belgium
关键词
Planar vector field; Lienard equation; Hamiltonian perturbation; Limit cycle; Abelian integral; 2-Saddle cycle; HAMILTONIAN 2-SADDLE CYCLE; MATHEMATICAL PROBLEMS; ABELIAN-INTEGRALS;
D O I
10.1016/j.jde.2012.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims at providing an example of a family of polynomial Lienard equations exhibiting an alien limit cycle. This limit cycle is perturbed from a 2-saddle cycle in the boundary of an annulus of periodic orbits given by a Hamiltonian vector field. The Hamiltonian represents a truncated pendulum of degree 4. In comparison to a former polynomial example, not only the equations are simpler but a lot of tedious calculations can be avoided, making the example also interesting with respect to simplicity in treatment. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1582 / 1600
页数:19
相关论文
共 50 条
  • [31] Existence of limit cycles of Lienard equation
    Qingdao Daxue Xuebao(Gongcheng Jishuban)/Journal of Qingdao University (Engineering & Technology Edition), 1998, 13 (04): : 78 - 81
  • [32] Limit cycles of polynomial Lienard systems
    Phys Rev E., 4 (5185):
  • [33] Existence and non-existence of limit cycles for Lienard prescribed curvature equations
    Mawhin, Jean
    Villari, Gabriele
    Zanolin, Fabio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 : 259 - 270
  • [34] Non-existence and uniqueness of limit cycles in a class of generalized Lienard equations
    Llibre, Jaume
    Valls, Claudia
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [35] ON THE EXISTENCE OF LIMIT CYCLES OF LIENARD EQUATION
    黄安基
    曹登庆
    AppliedMathematicsandMechanics(EnglishEdition), 1990, (02) : 125 - 138
  • [36] Limit cycles in Lienard systems with saturation
    Lathuiliere, Thomas
    Valmorbida, Giorgio
    Panteley, Elena
    IFAC PAPERSONLINE, 2018, 51 (33): : 127 - 131
  • [37] A new criterion for controlling the number of limit cycles of some generalized Lienard equations
    Gasull, A
    Giacomini, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) : 54 - 73
  • [38] On the algebraic limit cycles of Lienard systems
    Llibre, Jaume
    Zhang, Xiang
    NONLINEARITY, 2008, 21 (09) : 2011 - 2022
  • [39] Limit cycles of polynomial Lienard systems
    Llibre, J
    Pizarro, L
    Ponce, E
    PHYSICAL REVIEW E, 1998, 58 (04): : 5185 - 5187
  • [40] The hyperelliptic limit cycles of the Lienard systems
    Yu, Xiaolan
    Zhang, Xiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 535 - 539