The Equivalence of Two Notions of Discreteness of Triangulated Categories

被引:2
|
作者
Yao, Lingling [1 ]
Yang, Dong [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Derived discrete; Discreteness of triangulated category; ST-triple; T-structure; Co-t-structure; T-STRUCTURES; THEOREMS;
D O I
10.1007/s10468-020-09991-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an ST-triple (C, D, M) one can associate a co-t-structure on C and a t-structure on D. It is shown that the discreteness of C with respect to the co-t-structure is equivalent to the discreteness of D with respect to the t-structure. As a special case, the discreteness of D-b(mod A) in the sense of Vossieck is equivalent to the discreteness of K-b(proj A) in a dual sense, where A is a finite-dimensional algebra.
引用
收藏
页码:1295 / 1312
页数:18
相关论文
共 50 条
  • [41] Locally finite triangulated categories
    Xiao, J
    Zhu, B
    JOURNAL OF ALGEBRA, 2005, 290 (02) : 473 - 490
  • [42] Dimension and level of triangulated categories
    Yang, Xiaoyan
    Shen, Jingwen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (07)
  • [43] Silting mutation in triangulated categories
    Aihara, Takuma
    Iyama, Osamu
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 633 - 668
  • [44] The additivity of traces in triangulated categories
    May, JP
    ADVANCES IN MATHEMATICS, 2001, 163 (01) : 34 - 73
  • [45] Depth and Dimension for Triangulated Categories
    Li Wang
    Zhongkui Liu
    Xiaoyan Yang
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 143 - 157
  • [46] ENHANCED FINITE TRIANGULATED CATEGORIES
    Muro, Fernando
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (03) : 741 - 783
  • [47] Stability conditions on triangulated categories
    Bridgeland, Tom
    ANNALS OF MATHEMATICS, 2007, 166 (02) : 317 - 345
  • [48] ADJOINT FUNCTORS AND TRIANGULATED CATEGORIES
    Grime, M.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3589 - 3607
  • [49] Cohomological symmetry in triangulated categories
    Bergh, Petter Andreas
    Oppermann, Steffen
    JOURNAL OF ALGEBRA, 2011, 347 (01) : 143 - 152
  • [50] HOMOTOPY LIMITS IN TRIANGULATED CATEGORIES
    BOKSTEDT, M
    NEEMAN, A
    COMPOSITIO MATHEMATICA, 1993, 86 (02) : 209 - 234