The Equivalence of Two Notions of Discreteness of Triangulated Categories

被引:2
|
作者
Yao, Lingling [1 ]
Yang, Dong [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Derived discrete; Discreteness of triangulated category; ST-triple; T-structure; Co-t-structure; T-STRUCTURES; THEOREMS;
D O I
10.1007/s10468-020-09991-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an ST-triple (C, D, M) one can associate a co-t-structure on C and a t-structure on D. It is shown that the discreteness of C with respect to the co-t-structure is equivalent to the discreteness of D with respect to the t-structure. As a special case, the discreteness of D-b(mod A) in the sense of Vossieck is equivalent to the discreteness of K-b(proj A) in a dual sense, where A is a finite-dimensional algebra.
引用
收藏
页码:1295 / 1312
页数:18
相关论文
共 50 条
  • [21] Completions of Triangulated Categories
    Krause, Henning
    TRIANGULATED CATEGORIES IN REPRESENTATION THEORY AND BEYOND, ABEL SYMPOSIUM 2022, 2024, 17 : 169 - 193
  • [22] A NULLSTELLENSATZ FOR TRIANGULATED CATEGORIES
    Bondarko, M. V.
    Sosnilo, V. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (06) : 889 - 898
  • [23] Discrete triangulated categories
    Broomhead, Nathan
    Pauksztello, David
    Ploog, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (01) : 174 - 188
  • [24] Descent in triangulated categories
    Balmer, Paul
    MATHEMATISCHE ANNALEN, 2012, 353 (01) : 109 - 125
  • [25] On A∞-enhancements for triangulated categories
    Kajiura, Hiroshige
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) : 1476 - 1503
  • [26] Derived and Triangulated Categories
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 11 - 42
  • [27] Separability and triangulated categories
    Balmer, Paul
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4352 - 4372
  • [28] Determinants in triangulated categories
    Vaknin, A
    K-THEORY, 2001, 24 (01): : 57 - 68
  • [29] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [30] Triangulated Matlis equivalence
    Positselski, Leonid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)