Chiral Noble Metal Nanoparticles and Nanostructures

被引:34
|
作者
Karimova, Natalia V. [1 ]
Aikens, Christine M. [2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
chiroptical properties; circular dichroism; gold nanoparticles; silver nanoparticles; THIOLATE-PROTECTED AU-38; ELECTRONIC-STRUCTURE; OPTICAL-ACTIVITY; SILVER NANOCLUSTERS; GOLD CLUSTERS; CHIROPTICAL PROPERTIES; CRYSTAL-STRUCTURE; LIGAND-EXCHANGE; SIZE SELECTION; AU-25; CLUSTER;
D O I
10.1002/ppsc.201900043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origins of chirality and chiroptical properties in ligand-protected gold and silver nanoparticles (NPs) are considered herein. Current conceptual models including the chiral core model, dissymmetric field model, and chiral footprint model are described as mechanisms that contribute to the understanding of chirality in these systems. Then, recent studies on thiolate-stabilized gold NPs, phosphine-stabilized gold NPs, multi-ligand-stabilized silver NPs, and DNA-stabilized silver NPs are discussed. Insights into the origin of chiroptical properties including reasons for large Cotton effects in circular dichroism spectra are considered using both experimental and theoretical data available. Theoretical calculations using density functional theory (DFT) and time-dependent DFT methods are found to be extremely useful for providing insights into the origin of chirality. The origin of chirality in ligand-protected gold and silver NPs can be considered to be a complex phenomenon, arising from a combination of the three conceptual models.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Noble Metal Nanoparticles for Biosensing Applications
    Doria, Goncalo
    Conde, Joao
    Veigas, Bruno
    Giestas, Leticia
    Almeida, Carina
    Assuncao, Maria
    Rosa, Joao
    Baptista, Pedro V.
    SENSORS, 2012, 12 (02) : 1657 - 1687
  • [32] Formation and stabilization of noble metal nanoparticles
    Papp, Szilvia
    Patakfalvi, Rita
    Dekany, Imre
    CROATICA CHEMICA ACTA, 2007, 80 (3-4) : 493 - 502
  • [33] "Ship-in-a-Bottle" Growth of Noble Metal Nanostructures
    Xiao, Manda
    Zhao, Chunmei
    Chen, Huanjun
    Yang, Baocheng
    Wang, Jianfang
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) : 4526 - 4532
  • [34] Ellipsometry of hybrid noble metal-dielectric nanostructures
    Yampolskiy, A. L.
    Makarenko, O., V
    Poperenko, L., V
    Lysiuk, V. O.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2018, 21 (04) : 412 - 416
  • [35] PHYS 134-Anisotropic noble metal nanostructures
    Mirkin, Chad A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [36] CATALYTIC ACTIVITY OF THE NOBLE METAL NANOPARTICLES
    Kvitek, Libor
    Strysovsky, Tomas
    Kubikova, Martina
    Orsag, Miroslav
    Panacek, Ales
    Prucek, Robert
    12TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2020), 2021, : 255 - 260
  • [37] Noble Metal Nanoparticles Applications in Cancer
    Conde, Joao
    Doria, Goncalo
    Baptista, Pedro
    JOURNAL OF DRUG DELIVERY, 2012, 2012
  • [38] Noble Metal Nanoparticles Produced by Microorganism
    Bai, Rui
    Tian, Xiaochun
    Wang, Shuhua
    Yan, Weifu
    Gang, Haiyin
    Xiao, Yong
    PROGRESS IN CHEMISTRY, 2019, 31 (06) : 872 - 881
  • [39] Noble metal nanoparticles on biotemplated nanowires
    Gruber, Sabine
    Zollfrank, Cordt
    BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS, 2012, 1 (02) : 95 - 100
  • [40] Noble Metal Nanoparticles in Biomedical Thermoplasmonics
    O. V. Dement’eva
    M. E. Kartseva
    Colloid Journal, 2023, 85 : 500 - 519