Chiral Noble Metal Nanoparticles and Nanostructures

被引:34
|
作者
Karimova, Natalia V. [1 ]
Aikens, Christine M. [2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
chiroptical properties; circular dichroism; gold nanoparticles; silver nanoparticles; THIOLATE-PROTECTED AU-38; ELECTRONIC-STRUCTURE; OPTICAL-ACTIVITY; SILVER NANOCLUSTERS; GOLD CLUSTERS; CHIROPTICAL PROPERTIES; CRYSTAL-STRUCTURE; LIGAND-EXCHANGE; SIZE SELECTION; AU-25; CLUSTER;
D O I
10.1002/ppsc.201900043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origins of chirality and chiroptical properties in ligand-protected gold and silver nanoparticles (NPs) are considered herein. Current conceptual models including the chiral core model, dissymmetric field model, and chiral footprint model are described as mechanisms that contribute to the understanding of chirality in these systems. Then, recent studies on thiolate-stabilized gold NPs, phosphine-stabilized gold NPs, multi-ligand-stabilized silver NPs, and DNA-stabilized silver NPs are discussed. Insights into the origin of chiroptical properties including reasons for large Cotton effects in circular dichroism spectra are considered using both experimental and theoretical data available. Theoretical calculations using density functional theory (DFT) and time-dependent DFT methods are found to be extremely useful for providing insights into the origin of chirality. The origin of chirality in ligand-protected gold and silver NPs can be considered to be a complex phenomenon, arising from a combination of the three conceptual models.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A device for atmospheric laser deposition of noble metal nanostructures
    K. V. Kozadaev
    Instruments and Experimental Techniques, 2016, 59 : 865 - 869
  • [22] Plasmonic photoelectrochemical reactions on noble metal electrodes of nanostructures
    Rani, Karuppasamy Kohila
    Devasenathipathy, Rajkumar
    Wang, Jia-Zheng
    Hui, Xiao-Yuan
    Lin, Jian-De
    Zhang, Yi-Miao
    Zhao, Liu-Bin
    Zhou, Jian-Zhang
    Wu, De-Yin
    Tian, Zhong-Qun
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 34
  • [23] NMR Techniques for Noble Metal Nanoparticles
    Marbella, Lauren E.
    Millstone, Jill E.
    CHEMISTRY OF MATERIALS, 2015, 27 (08) : 2721 - 2739
  • [24] OPTICAL RESPONSE OF NOBLE METAL NANOPARTICLES
    Myroshnychenko, Viktor
    Javier Garcia de Abajo, F.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2011, 89
  • [25] Interfacial synthesis of noble metal nanoparticles
    Khomutov, GB
    Gubin, SP
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 22 (02): : 141 - 146
  • [26] Designer noble metal nanostructures: Controlled synthesis and beyond
    Yin, Yadong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [27] Noble-metal nanostructures on carburized W(110)
    Bachmann, Magdalena
    Memmel, Norbert
    Bertel, Erminald
    SURFACE SCIENCE, 2011, 605 (13-14) : 1263 - 1270
  • [28] Fabrication and characterization of the noble metal nanostructures on the GaAs surface
    Gladskikh, Polina V.
    Gladskikh, Igor A.
    Toropov, Nikita A.
    Vartanyan, Tigran A.
    NANOPHOTONICS VI, 2016, 9884
  • [29] Engineered Noble-Metal Nanostructures for in Vitro Diagnostics
    Xi, Zheng
    Ye, Haihang
    Xia, Xiaohu
    CHEMISTRY OF MATERIALS, 2018, 30 (23) : 8391 - 8414
  • [30] Noble metal nanoparticles in organic matrix
    Molodtsova, O., V
    Aristova, I. M.
    Potorochin, D., V
    Babenkov, S., V
    Khodos, I. I.
    Molodtsov, S. L.
    Vorokhta, M.
    Skala, T.
    Aristov, V. Yu
    APPLIED SURFACE SCIENCE, 2020, 506