Chiral Noble Metal Nanoparticles and Nanostructures

被引:34
|
作者
Karimova, Natalia V. [1 ]
Aikens, Christine M. [2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
chiroptical properties; circular dichroism; gold nanoparticles; silver nanoparticles; THIOLATE-PROTECTED AU-38; ELECTRONIC-STRUCTURE; OPTICAL-ACTIVITY; SILVER NANOCLUSTERS; GOLD CLUSTERS; CHIROPTICAL PROPERTIES; CRYSTAL-STRUCTURE; LIGAND-EXCHANGE; SIZE SELECTION; AU-25; CLUSTER;
D O I
10.1002/ppsc.201900043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origins of chirality and chiroptical properties in ligand-protected gold and silver nanoparticles (NPs) are considered herein. Current conceptual models including the chiral core model, dissymmetric field model, and chiral footprint model are described as mechanisms that contribute to the understanding of chirality in these systems. Then, recent studies on thiolate-stabilized gold NPs, phosphine-stabilized gold NPs, multi-ligand-stabilized silver NPs, and DNA-stabilized silver NPs are discussed. Insights into the origin of chiroptical properties including reasons for large Cotton effects in circular dichroism spectra are considered using both experimental and theoretical data available. Theoretical calculations using density functional theory (DFT) and time-dependent DFT methods are found to be extremely useful for providing insights into the origin of chirality. The origin of chirality in ligand-protected gold and silver NPs can be considered to be a complex phenomenon, arising from a combination of the three conceptual models.
引用
收藏
页数:21
相关论文
共 50 条