Equal values of standard counting polynomials

被引:8
|
作者
Gyoery, Kalman [1 ]
Kovacs, Tunde [1 ]
Peter, Gyoengyver [1 ]
Pinter, Akos [2 ,3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Hungarian Acad Sci, Inst Math, Mtade Res Grp Equat Funct & Curves, H-4010 Debrecen, Hungary
[3] Univ Debrecen, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 84卷 / 1-2期
关键词
diophantine equations; counting polynomials; DIOPHANTINE EQUATION; INTEGER POINTS; NUMBER;
D O I
10.5486/PMD.2014.5956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following discrete geometrical question provides a background for some classical diophantine problems. For given positive integers m, n, can an m-dimensional and an n-dimensional unit cube, simplex, pyramid or octahedron contain equally many integral points? Apart from some trivial cases, the question leads to 9 families of diophantine equations, see Table 1. In this paper we give a brief survey of known results on these equations, and prove some new theorems concerning the solutions.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [41] On polynomials counting essentially irreducible maps
    Budd, Timothy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02): : 1 - 43
  • [42] Zeros of graph-counting polynomials
    Ruelle, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) : 43 - 56
  • [43] Power counting energy flow polynomials
    Pedro Cal
    Jesse Thaler
    Wouter J. Waalewijn
    Journal of High Energy Physics, 2022
  • [44] Counting Reducible and Singular Bivariate Polynomials
    von zur Gathen, Joachim
    ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 369 - 376
  • [45] ON COUNTING POLYNOMIALS OVER FINITE FIELDS
    Chuang, Chih-Yun
    Kuan, Yen-Liang
    Yu, Jing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4305 - 4316
  • [46] STUDY OF IPR FULLERENES BY COUNTING POLYNOMIALS
    Ashrafi, A. R.
    Ghorbani, M.
    Jalali, M.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2009, 8 (03): : 451 - 457
  • [47] Counting reducible and singular bivariate polynomials
    von zur Gathen, Joachim
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) : 944 - 978
  • [48] ESTIMATES OF THE ZEROS OF SOME COUNTING POLYNOMIALS
    Mezo, Istvan
    Wang, Chen-Ying
    Guan, Hai-Yan
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 1 - 7
  • [49] On counting polynomials of certain polyomino chains
    Imran, M.
    Hayat, S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 (02): : 332 - 337
  • [50] Counting decomposable polynomials with integer coefficients
    Artūras Dubickas
    Min Sha
    Monatshefte für Mathematik, 2023, 200 : 229 - 253