Equal values of standard counting polynomials

被引:8
|
作者
Gyoery, Kalman [1 ]
Kovacs, Tunde [1 ]
Peter, Gyoengyver [1 ]
Pinter, Akos [2 ,3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Hungarian Acad Sci, Inst Math, Mtade Res Grp Equat Funct & Curves, H-4010 Debrecen, Hungary
[3] Univ Debrecen, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 84卷 / 1-2期
关键词
diophantine equations; counting polynomials; DIOPHANTINE EQUATION; INTEGER POINTS; NUMBER;
D O I
10.5486/PMD.2014.5956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following discrete geometrical question provides a background for some classical diophantine problems. For given positive integers m, n, can an m-dimensional and an n-dimensional unit cube, simplex, pyramid or octahedron contain equally many integral points? Apart from some trivial cases, the question leads to 9 families of diophantine equations, see Table 1. In this paper we give a brief survey of known results on these equations, and prove some new theorems concerning the solutions.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [21] On equal values of trinomials
    Gyöngyvér Péter
    Ákos Pintér
    Andrzej Schinzel
    Monatshefte für Mathematik, 2011, 162 : 313 - 320
  • [22] On equal values of trinomials
    Peter, Gyoengyver
    Pinter, Akos
    Schinzel, Andrzej
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (03): : 313 - 320
  • [23] Positive values of polynomials
    Yudin, VA
    MATHEMATICAL NOTES, 2002, 72 (3-4) : 440 - 443
  • [24] Positive Values of Polynomials
    V. A. Yudin
    Mathematical Notes, 2002, 72 : 440 - 443
  • [25] Counting external values
    Schröder, Nico
    Mechatronik, 2015, 123 (9-10): : 38 - 39
  • [26] Values of Bernoulli polynomials
    Granville, A
    Sun, ZW
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 172 (01) : 117 - 137
  • [27] CRITICAL VALUES OF POLYNOMIALS
    GIACINTI, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (17): : 999 - 1002
  • [28] Polynomials with two values
    Joachim von Zur Gathen
    James R. Roche
    Combinatorica, 1997, 17 : 345 - 362
  • [29] POLYNOMIALS WITH INTEGRAL VALUES
    GUNJI, H
    MCQUILLAN, DL
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 78 (01) : 1 - 7
  • [30] SQUAREFREE VALUES OF POLYNOMIALS
    FILASETA, M
    ACTA ARITHMETICA, 1992, 60 (03) : 213 - 231