Equal values of standard counting polynomials

被引:8
|
作者
Gyoery, Kalman [1 ]
Kovacs, Tunde [1 ]
Peter, Gyoengyver [1 ]
Pinter, Akos [2 ,3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Hungarian Acad Sci, Inst Math, Mtade Res Grp Equat Funct & Curves, H-4010 Debrecen, Hungary
[3] Univ Debrecen, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 84卷 / 1-2期
关键词
diophantine equations; counting polynomials; DIOPHANTINE EQUATION; INTEGER POINTS; NUMBER;
D O I
10.5486/PMD.2014.5956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following discrete geometrical question provides a background for some classical diophantine problems. For given positive integers m, n, can an m-dimensional and an n-dimensional unit cube, simplex, pyramid or octahedron contain equally many integral points? Apart from some trivial cases, the question leads to 9 families of diophantine equations, see Table 1. In this paper we give a brief survey of known results on these equations, and prove some new theorems concerning the solutions.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条