Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements

被引:14
|
作者
Xie, Manting [1 ]
Xie, Hehu [2 ,3 ]
Liu, Xuefeng [4 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, 8050 Ikarashi 2 No Cho, Niigata, Niigata 9502181, Japan
基金
日本学术振兴会;
关键词
Stokes eigenvalue problem; Eigenvalue bound; Crouzeix-Raviart element; Enriched Crouzeix-Raviart element; Explicit lower bound; A-POSTERIORI; APPROXIMATION; EIGENMODES; EQUATIONS; DOMAIN;
D O I
10.1007/s13160-017-0291-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is proposed to give explicit lower bounds of the Stokes eigenvalues by utilizing two nonconforming finite element methods: Crouzeix-Raviart (CR) element and enriched Crouzeix-Raviart (ECR) element. Compared with the existing literatures which give lower eigenvalue bounds under the asymptotic condition that the mesh size is "small enough", the proposed algorithm in this paper drops the asymptotic condition and provide explicit lower bounds even for a rough mesh. Numerical experiments are also performed to validate the theoretical results.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 50 条
  • [31] A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems
    Liang, Qigang
    Wang, Wei
    Xu, Xuejun
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 606 - 636
  • [32] A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems
    Liang, Qigang
    Wang, Wei
    Xu, Xuejun
    Communications on Applied Mathematics and Computation, 2024,
  • [33] Stable low order nonconforming quadrilateral finite elements for the stokes problem
    Kim, Y
    Kim, S
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 363 - 376
  • [34] Nonconforming, anisotropic, rectangular finite elements of arbitrary order for the Stokes problem
    Apel, Thomas
    Matthies, Gunar
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1867 - 1891
  • [35] A Mortar Method Using Nonconforming and Mixed Finite Elements for the Coupled Stokes-Darcy Model
    Huang, Peiqi
    Chen, Jinru
    Cai, Mingchao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (03) : 596 - 620
  • [36] FINDING LOWER BOUNDS FOR EIGENVALUES OF NONLINEAR EIGENVALUE PROBLEMS
    JONES, LH
    SIAM REVIEW, 1972, 14 (03) : 531 - +
  • [37] Lower Bounds for Non-Classical Eigenvalue Problems
    Camus, Brice
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (01) : 25 - 36
  • [38] Lower Bounds for Non-Classical Eigenvalue Problems
    Brice Camus
    Integral Equations and Operator Theory, 2016, 85 : 25 - 36
  • [39] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Hu, Jun
    Huang, Yunqing
    Lin, Qun
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 196 - 221
  • [40] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Jun Hu
    Yunqing Huang
    Qun Lin
    Journal of Scientific Computing, 2014, 61 : 196 - 221