Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements

被引:14
|
作者
Xie, Manting [1 ]
Xie, Hehu [2 ,3 ]
Liu, Xuefeng [4 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, 8050 Ikarashi 2 No Cho, Niigata, Niigata 9502181, Japan
基金
日本学术振兴会;
关键词
Stokes eigenvalue problem; Eigenvalue bound; Crouzeix-Raviart element; Enriched Crouzeix-Raviart element; Explicit lower bound; A-POSTERIORI; APPROXIMATION; EIGENMODES; EQUATIONS; DOMAIN;
D O I
10.1007/s13160-017-0291-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is proposed to give explicit lower bounds of the Stokes eigenvalues by utilizing two nonconforming finite element methods: Crouzeix-Raviart (CR) element and enriched Crouzeix-Raviart (ECR) element. Compared with the existing literatures which give lower eigenvalue bounds under the asymptotic condition that the mesh size is "small enough", the proposed algorithm in this paper drops the asymptotic condition and provide explicit lower bounds even for a rough mesh. Numerical experiments are also performed to validate the theoretical results.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 50 条
  • [21] EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS
    Shipeng Mao Zhong-ci Shi LSEC
    Journal of Computational Mathematics, 2009, 27 (04) : 425 - 440
  • [22] EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS
    Mao, Shipeng
    Shi, Zhong-ci
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (04) : 425 - 440
  • [23] Stable nonconforming quadrilateral finite elements for the Stokes problem
    Kim, Y
    Lee, S
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 101 - 112
  • [24] Stable cheapest nonconforming finite elements for the Stokes equations
    Kim, Sihwan
    Yim, Jaeryun
    Sheen, Dongwoo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 2 - 14
  • [25] Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems
    Gedicke, Joscha
    Khan, Arbaz
    NUMERISCHE MATHEMATIK, 2020, 144 (03) : 585 - 614
  • [26] Divergence-conforming discontinuous Galerkin finite elements for Stokes eigenvalue problems
    Joscha Gedicke
    Arbaz Khan
    Numerische Mathematik, 2020, 144 : 585 - 614
  • [27] A mixed nonconforming finite element for the elasticity and Stokes problems
    Farhloul, M
    Fortin, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08): : 1179 - 1199
  • [28] A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR ELLIPTIC PROBLEMS
    Gao, Boran
    Zhang, Shuo
    Wang, Ming
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (02) : 215 - 226
  • [29] UPPER AND LOWER BOUNDS IN LINEAR EIGENVALUE PROBLEMS
    MASUR, EF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A682 - A682
  • [30] Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
    Armentano, MG
    Durán, RG
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 93 - 101