Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups

被引:0
|
作者
Ballesteros, A. [1 ]
Blasco, A. [1 ]
Musso, F. [1 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
关键词
Lotka-Volterra; perturbations; integrable systems; Lie groups; Poisson coalgebras; Casimir functions; N-dimensional; quantum deformations; HAMILTONIAN-STRUCTURE; 1ST INTEGRALS; 3; DIMENSIONS; EQUATIONS; INTEGRABILITY; POLYNOMIALS; INVARIANTS;
D O I
10.1063/1.4733365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of integrable 3D Lotka-Volterra (LV) equations is shown to be a particular instance of Poisson-Lie dynamics on a family of solvable 3D Lie groups. As a consequence, the classification of all possible Poisson-Lie structures on these groups is shown to provide a systematic approach to obtain multiparametric integrable deformations of this LV system. Moreover, by making use of the coproduct map induced by the group multiplication, a twisted set of 3N-dimensional integrable Lotka-Volterra equations can be constructed. Finally, the quantization of one of the Poisson-Lie LV structures is performed, and is shown to give rise to a quantum euclidean algebra.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [11] On the positivity of Poisson integrators for the Lotka-Volterra equations
    Beck, Melanie
    Gander, Martin J.
    BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 319 - 340
  • [12] LIE SYMMETRIES AND INVARIANTS OF THE LOTKA-VOLTERRA SYSTEM
    ALMEIDA, MA
    MAGALHAES, ME
    MOREIRA, IC
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (04) : 1854 - 1867
  • [13] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    SEMURA, JS
    NATURE, 1975, 257 (5525) : 388 - 389
  • [14] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [15] Integrable Lotka-Volterra systems
    Bogoyavlenskij, O. I.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06): : 543 - 556
  • [16] STABILITY OF LOTKA-VOLTERRA SYSTEMS
    TULJAPURKAR, SD
    NATURE, 1976, 264 (5584) : 381 - 381
  • [17] Geometry of Tangent Poisson-Lie Groups
    Al-Dayel, Ibrahim
    Aloui, Foued
    Deshmukh, Sharief
    MATHEMATICS, 2023, 11 (01)
  • [18] Quantization of Poisson-Lie groups and applications
    Bidegain, F
    Pinczon, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) : 295 - 332
  • [19] POISSON-LIE QUASI-GROUPS
    BANGOURA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 975 - 978
  • [20] Poisson-Lie Groups and Gauge Theory
    Meusburger, Catherine
    SYMMETRY-BASEL, 2021, 13 (08):