Integral metaplectic modular categories

被引:0
|
作者
Deaton, Adam [1 ]
Gustafson, Paul [1 ]
Mavrakis, Leslie [2 ]
Rowell, Eric C. [1 ]
Poltoratski, Sasha [3 ]
Timmerman, Sydney [4 ]
Warren, Benjamin [5 ]
Zhang, Qing [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seattle Pacific Univ, Dept Math, Seattle, WA 98119 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Group-theoretical braided fusion category; property F; link invariant; braid group representation;
D O I
10.1142/S0218216520500327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories C with the fusion rules of SO(8)(2) we determine the finite group G for which Rep(D(omega)G) is braided equivalent to Z(C). In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On special L-values attached to metaplectic modular forms
    Thanasis Bouganis
    Mathematische Zeitschrift, 2018, 288 : 725 - 740
  • [32] Integral non-group-theoretical modular categories of dimension p 2 q 2
    Galindo, Cesar
    Plavnik, Julia
    Rowell, Eric C.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (04) : 516 - 526
  • [33] On Classification of Modular Categories by Rank
    Bruillard, Paul
    Ng, Siu-Hung
    Rowell, Eric C.
    Wang, Zhenghan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (24) : 7546 - 7588
  • [34] Modular categories and orbifold models
    Kirillov, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (02) : 309 - 335
  • [35] Quotient Categories of Modular Representations
    Andersen, Henning Haahr
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 1 - 16
  • [36] MODULAR TRANSFORMATIONS FOR TENSOR CATEGORIES
    LYUBASHENKO, V
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) : 279 - 327
  • [37] On Classification of Modular Tensor Categories
    Eric Rowell
    Richard Stong
    Zhenghan Wang
    Communications in Mathematical Physics, 2009, 292 : 343 - 389
  • [38] On Gauging Symmetry of Modular Categories
    Shawn X. Cui
    César Galindo
    Julia Yael Plavnik
    Zhenghan Wang
    Communications in Mathematical Physics, 2016, 348 : 1043 - 1064
  • [39] Modular categories and Hopf algebras
    Takeuchi, M
    JOURNAL OF ALGEBRA, 2001, 243 (02) : 631 - 643
  • [40] MODULAR LATTICES AND ABELIAN CATEGORIES
    HUTCHINSON, G
    JOURNAL OF ALGEBRA, 1971, 19 (02) : 156 - +