Integral metaplectic modular categories

被引:0
|
作者
Deaton, Adam [1 ]
Gustafson, Paul [1 ]
Mavrakis, Leslie [2 ]
Rowell, Eric C. [1 ]
Poltoratski, Sasha [3 ]
Timmerman, Sydney [4 ]
Warren, Benjamin [5 ]
Zhang, Qing [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seattle Pacific Univ, Dept Math, Seattle, WA 98119 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Group-theoretical braided fusion category; property F; link invariant; braid group representation;
D O I
10.1142/S0218216520500327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories C with the fusion rules of SO(8)(2) we determine the finite group G for which Rep(D(omega)G) is braided equivalent to Z(C). In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Integral Representations for the Class of Generalized Metaplectic Operators
    Cordero, Elena
    Nicola, Fabio
    Rodino, Luigi
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (04) : 694 - 714
  • [22] Ribbon Abelian categories as modular categories
    Lyubashenko, V
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1996, 5 (03) : 311 - 403
  • [23] Modular categories are not determined by their modular data
    Mignard, Michael
    Schauenburg, Peter
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [24] Modular categories are not determined by their modular data
    Michaël Mignard
    Peter Schauenburg
    Letters in Mathematical Physics, 2021, 111
  • [25] Integral representations for metaplectic operators: energy localization problems
    Oonincx, P
    ter Morsche, H
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 : 125 - 134
  • [26] On the structure of modular categories
    Müger, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 : 291 - 308
  • [27] Spin modular categories
    Beliakova, Anna
    Blanchet, Christian
    Contreras, Eva
    QUANTUM TOPOLOGY, 2017, 8 (03) : 459 - 504
  • [28] Weil Representation and Metaplectic Groups over an Integral Domain
    Chinello, Gianmarco
    Turchetti, Daniele
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2388 - 2419
  • [29] On invariants of modular categories beyond modular data
    Bonderson, Parsa
    Delaney, Colleen
    Galindo, Cesar
    Rowell, Eric C.
    Tran, Alan
    Wang, Zhenghan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) : 4065 - 4088
  • [30] On special L-values attached to metaplectic modular forms
    Bouganis, Thanasis
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 725 - 740