Integral metaplectic modular categories

被引:0
|
作者
Deaton, Adam [1 ]
Gustafson, Paul [1 ]
Mavrakis, Leslie [2 ]
Rowell, Eric C. [1 ]
Poltoratski, Sasha [3 ]
Timmerman, Sydney [4 ]
Warren, Benjamin [5 ]
Zhang, Qing [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seattle Pacific Univ, Dept Math, Seattle, WA 98119 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
关键词
Group-theoretical braided fusion category; property F; link invariant; braid group representation;
D O I
10.1142/S0218216520500327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories C with the fusion rules of SO(8)(2) we determine the finite group G for which Rep(D(omega)G) is braided equivalent to Z(C). In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classification of metaplectic modular categories
    Ardonne, Eddy
    Cheng, Meng
    Rowell, Eric C.
    Wang, Zhenghan
    JOURNAL OF ALGEBRA, 2016, 466 : 141 - 146
  • [2] On Metaplectic Modular Categories and Their Applications
    Matthew B. Hastings
    Chetan Nayak
    Zhenghan Wang
    Communications in Mathematical Physics, 2014, 330 : 45 - 68
  • [3] On Metaplectic Modular Categories and Their Applications
    Hastings, Matthew B.
    Nayak, Chetan
    Wang, Zhenghan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) : 45 - 68
  • [4] On the classification of weakly integral modular categories
    Bruillard, Paul
    Galindo, Cesar
    Ng, Siu-Hung
    Plavnik, Julia Y.
    Rowell, Eric C.
    Wang, Zhenghan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (06) : 2364 - 2388
  • [5] Classification of Metaplectic Fusion Categories
    Ardonne, Eddy
    Finch, Peter E.
    Titsworth, Matthew
    SYMMETRY-BASEL, 2021, 13 (11):
  • [6] Integral almost square-free modular categories
    Dong, Jingcheng
    Li, Libin
    Dai, Li
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
  • [7] METAPLECTIC CATEGORIES, GAUGING AND PROPERTY F
    Gustafson, Paul
    Rowell, Eric C.
    Ruan, Yuze
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (03) : 411 - 424
  • [8] On the integral representations for metaplectic operators
    ter Morsche, H
    Oonincx, PJ
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2002, 8 (03) : 245 - 257
  • [9] On the Integral Representations for Metaplectic Operators
    Hennie ter Morsche
    Patrick J. Oonincx
    Journal of Fourier Analysis and Applications, 2002, 8 : 245 - 258
  • [10] Integral Modular Categories of Frobenius-Perron Dimension pqn
    Jingcheng Dong
    Henry Tucker
    Algebras and Representation Theory, 2016, 19 : 33 - 46