Non-abelian tensor product and homology of Lie superalgebras

被引:18
|
作者
Garcia-Martinez, Xabier [1 ]
Khraaladze, Emzar [2 ]
Ladra, Manuel [1 ]
机构
[1] Univ Santiago de Compostela, IMAT, Dept Algebra, Santiago De Compostela 15782, Spain
[2] Tbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Lie superalgebras; Associative superalgebras; Non-abelian tensor and exterior products; Non-abelian homology; Cyclic homology; Hopf formula; Crossed module; CENTRAL EXTENSIONS; COHOMOLOGY; ALGEBRAS;
D O I
10.1016/j.jalgebra.2015.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the non-abelian tensor product of Lie superalgebras and study some of its properties. We use it to describe the universal central extensions of Lie superalgebras. We present the low-dimensional non-abelian homology of Lie superalgebras and establish its relationship with the cyclic homology of associative superalgebras. We also define the non-abelian exterior product and give an analogue of Miller's theorem, Hopf formula and a six-term exact sequence for the homology of Lie superalgebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 488
页数:25
相关论文
共 50 条
  • [31] Non-Abelian homology of groups
    Inassaridze, H
    Inassaridze, N
    K-THEORY, 1999, 18 (01): : 1 - 17
  • [32] On the Dimension of Non-Abelian Tensor Squares of n-Lie Algebras
    Akbarossadat, Nafiseh
    Saeedi, Farshid
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (03): : 363 - 381
  • [33] Tensor product representations for orthosymplectic Lie superalgebras
    Benkart, G
    Shader, CYL
    Ram, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (01) : 1 - 48
  • [34] The Non-Abelian Tensor and Exterior Products of Crossed Modules of Lie Algebras
    Ravanbod, Hajar
    Salemkar, Ali Reza
    JOURNAL OF LIE THEORY, 2018, 28 (01) : 169 - 185
  • [35] Finiteness of homotopy groups related to the non-abelian tensor product
    Raimundo Bastos
    Noraí R. Rocco
    Ewerton R. Vieira
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 2081 - 2091
  • [36] Finiteness of homotopy groups related to the non-abelian tensor product
    Bastos, Raimundo
    Rocco, Norai R.
    Vieira, Ewerton R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 2081 - 2091
  • [37] A non-abelian Hom-Leibniz tensor product and applications
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06): : 1133 - 1152
  • [38] THE NON-ABELIAN TENSOR PRODUCT OF FINITE-GROUPS IS FINITE
    ELLIS, GJ
    JOURNAL OF ALGEBRA, 1987, 111 (01) : 203 - 205
  • [39] The non-Abelian tensor multiplet
    Gustavsson, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [40] The non-Abelian tensor multiplet
    Andreas Gustavsson
    Journal of High Energy Physics, 2018