Non-abelian tensor product and homology of Lie superalgebras

被引:18
|
作者
Garcia-Martinez, Xabier [1 ]
Khraaladze, Emzar [2 ]
Ladra, Manuel [1 ]
机构
[1] Univ Santiago de Compostela, IMAT, Dept Algebra, Santiago De Compostela 15782, Spain
[2] Tbilisi State Univ, A Razmadze Math Inst, GE-0177 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Lie superalgebras; Associative superalgebras; Non-abelian tensor and exterior products; Non-abelian homology; Cyclic homology; Hopf formula; Crossed module; CENTRAL EXTENSIONS; COHOMOLOGY; ALGEBRAS;
D O I
10.1016/j.jalgebra.2015.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the non-abelian tensor product of Lie superalgebras and study some of its properties. We use it to describe the universal central extensions of Lie superalgebras. We present the low-dimensional non-abelian homology of Lie superalgebras and establish its relationship with the cyclic homology of associative superalgebras. We also define the non-abelian exterior product and give an analogue of Miller's theorem, Hopf formula and a six-term exact sequence for the homology of Lie superalgebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 488
页数:25
相关论文
共 50 条
  • [21] Non-abelian tensor and exterior products of multiplicative Lie rings
    Donadze, Guram
    Inassaridze, Nick
    Ladra, Manuel
    FORUM MATHEMATICUM, 2017, 29 (03) : 563 - 574
  • [22] THE NON-ABELIAN TENSOR SQUARE OF A FREE PRODUCT OF GROUPS
    GILBERT, ND
    ARCHIV DER MATHEMATIK, 1987, 48 (05) : 369 - 375
  • [23] ON HOMOLOGY SEQUENCE IN NON-ABELIAN HOMOLOGY
    FUKAWA, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1970, 242 : 91 - &
  • [24] The non-abelian tensor product of polycyclic groups is polycyclic
    Moravec, Primoz
    JOURNAL OF GROUP THEORY, 2007, 10 (06) : 795 - 798
  • [25] On some closure properties of the non-abelian tensor product
    Donadze, G.
    Ladra, M.
    Thomas, V. Z.
    JOURNAL OF ALGEBRA, 2017, 472 : 399 - 413
  • [26] Finiteness conditions for the non-abelian tensor product of groups
    Bastosl, R.
    Nakaoka, I. N.
    Rocco, N. R.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 603 - 615
  • [27] Finiteness conditions for the non-abelian tensor product of groups
    R. Bastos
    I. N. Nakaoka
    N. R. Rocco
    Monatshefte für Mathematik, 2018, 187 : 603 - 615
  • [28] Non-abelian tensor product of residually finite groups
    Bastos R.
    Rocco N.R.
    São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 361 - 369
  • [29] THE NON-ABELIAN TENSOR PRODUCT OF GROUPS AND RELATED CONSTRUCTIONS
    GILBERT, ND
    HIGGINS, PJ
    GLASGOW MATHEMATICAL JOURNAL, 1989, 31 : 17 - 29
  • [30] Non-abelian tensor product and circular orderability of groups ☆
    Ivanov, Maxim
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358