Dynamic Output Feedback H∞ Control of Discrete-time Markov Jump Linear Systems Through Linear Matrix Inequalities

被引:0
|
作者
Goncalves, A. P. C. [1 ]
Fioravanti, A. R. [2 ]
Geromel, J. C. [1 ]
机构
[1] Univ Estadual Campinas, DSCE, Sch Elect & Comp Engn, CP 6101, BR-13083970 Campinas, SP, Brazil
[2] INRIA Rocquencourt, Domaine Voluceau, F-78153 Le Chesnay, France
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the H-infinity dynamic output feedback control design problem of discrete-time Markov jump linear systems. Under the mode-dependent assumption, which means that the Markov parameters are available for feedback, the main contribution is on the complete characterization of all full order proper controllers such that the H-infinity norm of the closed loop system remains bounded by a given pre-specified level, yielding the global solution to the corresponding mode-dependent optimal control design problem, expressed in terms of pure Linear Matrix Inequalities - LMIs. A practical application, consisting the networked control of a vehicle platoon using measurement signals transmitted in a Markov channel, as initially proposed in [15], is considered.
引用
收藏
页码:4787 / 4792
页数:6
相关论文
共 50 条
  • [31] Discrete-time output feedback sliding-mode control design for uncertain systems using linear matrix inequalities
    Govindaswamy, Srinath
    Spurgeon, Sarah K.
    Floquet, Thierry
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) : 916 - 930
  • [32] Optimal output feedback control for discrete-time Markov jump linear system with input delay and packet losses
    Liu, Yue
    Han, Chunyan
    Wang, Xiaohong
    Wang, Wei
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (02): : 395 - 416
  • [33] The linear quadratic optimal control problem for discrete-time Markov jump linear singular systems
    Chavez-Fuentes, Jorge R.
    Costa, Eduardo F.
    Terra, Marco H.
    Rocha, Kaio D. T.
    AUTOMATICA, 2021, 127
  • [34] Discrete-time H∞ output feedback for Markov jump systems with uncertain transition probabilities
    Fioravanti, Andre R.
    Goncalves, Alim P. C.
    Geromel, Jose C.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (08) : 894 - 902
  • [35] H∞ Consensus for Linear Heterogeneous Discrete-Time Multiagent Systems With Output Feedback Control
    Zhang, Huaguang
    Han, Ji
    Wang, Yingchun
    Jiang, He
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (10) : 3713 - 3721
  • [36] H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems
    Zhang, Lixian
    AUTOMATICA, 2009, 45 (11) : 2570 - 2576
  • [37] H output feedback stabilisation of linear discrete-time systems with impulses
    Zhao, Shouwei
    Sun, Jitao
    Pan, Shengtao
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (10) : 1221 - 1229
  • [38] OPTIMIZATION OF COORDINATE TRANSFORMATION MATRIX FOR H∞ STATIC-OUTPUT-FEEDBACK CONTROL OF LINEAR DISCRETE-TIME SYSTEMS
    Feng, Zhi-Yong
    Xu, Li
    She, Jinhua
    Guo, Xue-Xun
    ASIAN JOURNAL OF CONTROL, 2015, 17 (02) : 604 - 614
  • [39] A new look at the robust control of discrete-time Markov jump linear systems
    Todorov, M. G.
    Fragoso, M. D.
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (03) : 518 - 534
  • [40] Robust stability and control of uncertain discrete-time Markov jump linear systems
    de Souza, CE
    2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 434 - 439