Divisibility on chains of submodules

被引:4
|
作者
Dastanpour, R. [1 ]
Ghorbani, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
关键词
Chain conditions; divisibility on chains; epi-retractability on chains; nonsingular modules; prime ideals; prime submodules; PRIME SUBMODULES; MODULES;
D O I
10.1080/00927872.2017.1376217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is said to satisfy ACC(d) (resp. DCCd) on submodules if for every ascending (resp. descending) chain {M-i} of submodules of M, for some for i >> 0. A nonzero module with ACC(d) or DCCd on submodules contains an essential submodule which is a direct sum of uniform submodules almost all noetherian. We show that if M is a finitely generated self-projective and self-injective R-module with ACC(d) or DCCd on submodules, then M is a finite direct sum of uniform submodules. It is shown that a regular right self-injective ring with ACC(d) or DCCd on right ideals must be semisimple artinian. We also prove that if M is a nonzero nonsingular module over a right noetherian ring and E(M)((N)) satisfies ACC(d) or DCCd on submodules, then M is semisimple. Next we consider some conditions for modules with ACC(d) (resp. DCCd) on submodules to satisfy ACC (resp. DCC) on some families of prime submodules. Finally, we show that a commutative ring with DCCd on ideals has dimension at most 1.
引用
收藏
页码:2305 / 2318
页数:14
相关论文
共 50 条
  • [31] COPURE SUBMODULES
    HIREMATH, VA
    ACTA MATHEMATICA HUNGARICA, 1984, 44 (1-2) : 3 - 12
  • [32] φ-PRIME SUBMODULES
    Zamani, Naser
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 253 - 259
  • [33] On coclosed submodules
    Tütüncü, DK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2005, 36 (03): : 135 - 144
  • [34] CLOSED SUBMODULES
    LOONSTRA, F
    LECTURE NOTES IN MATHEMATICS, 1983, 1006 : 630 - 638
  • [35] On Supplement Submodules
    C. Nebiyev
    A. Pancar
    Ukrainian Mathematical Journal, 2013, 65 : 1071 - 1078
  • [36] ON SATURATIONS OF SUBMODULES
    Hassanzadeh-Lelekaami, Dawood
    MATHEMATICAL REPORTS, 2020, 22 (02): : 99 - 106
  • [37] On Divisorial Submodules
    Darani, Ahmad Yousefian
    Rahmatinia, Mahdi
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (04): : 871 - 883
  • [38] ON A DIVISIBILITY PROBLEM
    Yang, Shichun
    Luca, Florian
    Togbe, Alain
    MATHEMATICA BOHEMICA, 2019, 144 (02): : 125 - 135
  • [39] On Second Submodules
    Ceken, Secil
    Alkan, Mustafa
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 67 - 77
  • [40] ON SUBMODULES OF A FIELD
    AYOUB, C
    MONATSHEFTE FUR MATHEMATIK, 1968, 72 (03): : 193 - &