Divisibility on chains of submodules

被引:4
|
作者
Dastanpour, R. [1 ]
Ghorbani, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
关键词
Chain conditions; divisibility on chains; epi-retractability on chains; nonsingular modules; prime ideals; prime submodules; PRIME SUBMODULES; MODULES;
D O I
10.1080/00927872.2017.1376217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is said to satisfy ACC(d) (resp. DCCd) on submodules if for every ascending (resp. descending) chain {M-i} of submodules of M, for some for i >> 0. A nonzero module with ACC(d) or DCCd on submodules contains an essential submodule which is a direct sum of uniform submodules almost all noetherian. We show that if M is a finitely generated self-projective and self-injective R-module with ACC(d) or DCCd on submodules, then M is a finite direct sum of uniform submodules. It is shown that a regular right self-injective ring with ACC(d) or DCCd on right ideals must be semisimple artinian. We also prove that if M is a nonzero nonsingular module over a right noetherian ring and E(M)((N)) satisfies ACC(d) or DCCd on submodules, then M is semisimple. Next we consider some conditions for modules with ACC(d) (resp. DCCd) on submodules to satisfy ACC (resp. DCC) on some families of prime submodules. Finally, we show that a commutative ring with DCCd on ideals has dimension at most 1.
引用
收藏
页码:2305 / 2318
页数:14
相关论文
共 50 条
  • [11] Cohomological divisibility and point count divisibility
    Esnault, H
    Katz, NM
    COMPOSITIO MATHEMATICA, 2005, 141 (01) : 93 - 100
  • [12] Weakly prime submodules and prime submodules
    Azizi, A.
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 343 - 346
  • [13] Perfect divisibility and 2-divisibility
    Chudnovsky, Maria
    Sivaraman, Vaidy
    JOURNAL OF GRAPH THEORY, 2019, 90 (01) : 54 - 60
  • [14] Determinants and divisibility of power GCD and power LCM matrices on finitely many coprime divisor chains
    Tan, Qianrong
    Luo, Miao
    Lin, Zongbing
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8112 - 8120
  • [15] WHEN RADICAL OF PRIMARY SUBMODULES ARE PRIME SUBMODULES
    Azizi, A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (04) : 1045 - 1058
  • [16] r-Submodules and sr-Submodules
    Koc, Suat
    Tekir, Unsal
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (04) : 1863 - 1876
  • [17] Divisibility Patterns within Pascal Divisibility Networks
    Solares-Hernandez, Pedro A.
    Manzano, Fernando A.
    Perez-Benito, Francisco J.
    Alberto Conejero, J.
    MATHEMATICS, 2020, 8 (02)
  • [18] On radicals of fuzzy submodules and primary fuzzy submodules
    Sidky, FI
    FUZZY SETS AND SYSTEMS, 2001, 119 (03) : 419 - 425
  • [19] Divisibility among power GCD matrices and among power LCM matrices on three coprime divisor chains
    Xu, Jiehong
    Li, Mao
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (07): : 773 - 788
  • [20] On complete lattices of radical submodules and z-submodules
    Moghimi, Hosein Fazaeli
    Mohebian, Seyedeh Fatemeh
    ALGEBRA UNIVERSALIS, 2025, 86 (01)