GLOBAL WELL-POSEDNESS OF NLS-KDV SYSTEMS FOR PERIODIC FUNCTIONS

被引:0
|
作者
Matheus, Carlos [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Global well-posedness; Schrodinger-Korteweg-de Vries system; I-method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Cauchy problem of the Schrodinger-Korteweg-deVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H-1 x H-1. More precisely, we show that the non-resonant NLS-KdV system is globally well-posed for initial data in H-s(T) x H-s(T) with s > 11/13 and the resonant NLS-KdV system is globally well-posed with s > 8/9. The strategy is to apply the I-method used by Colliander, Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by Arbieto, Corcho and Matheus concerning the global well-posedness of NLS-KdV systems.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] ON GLOBAL WELL-POSEDNESS OF THE MODIFIED KDV EQUATION IN MODULATION SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2971 - 2992
  • [22] Global well-posedness for KdV in Sobolev spaces of negative index
    Colliander, J.
    Keel, M.
    Staffilani, G.
    Takaoka, H.
    Tao, T.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [23] Global well-posedness of Kirchhoff systems
    Matsuyama, Tokio
    Ruzhansky, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02): : 220 - 240
  • [24] Local well-posedness for the periodic higher order KdV type equations
    Hiroyuki Hirayama
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 677 - 693
  • [25] Global well-posedness and long-time behavior of the fractional NLS
    Mouhamadou Sy
    Xueying Yu
    Stochastics and Partial Differential Equations: Analysis and Computations, 2022, 10 : 1261 - 1317
  • [26] Local well-posedness for the periodic higher order KdV type equations
    Hirayama, Hiroyuki
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (06): : 677 - 693
  • [27] Global well-posedness and long-time behavior of the fractional NLS
    Sy, Mouhamadou
    Yu, Xueying
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (04): : 1261 - 1317
  • [28] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING QUINTIC NLS IN THREE DIMENSIONS
    Killip, Rowan
    Visan, Monica
    ANALYSIS & PDE, 2012, 5 (04): : 855 - 885
  • [29] Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS
    Cardoso, Mykael
    Guzman, Carlos M.
    Pastor, Ademir
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 1 - 29
  • [30] Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS
    Mykael Cardoso
    Carlos M. Guzmàn
    Ademir Pastor
    Monatshefte für Mathematik, 2022, 198 : 1 - 29