Local well-posedness for the periodic higher order KdV type equations

被引:25
|
作者
Hirayama, Hiroyuki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2012年 / 19卷 / 06期
关键词
KdV equation; Well-posedness; Cauchy problem; Fourier restriction norm; KORTEWEG-DEVRIES EQUATION; DE-VRIES EQUATION; CAUCHY-PROBLEM; KAWAHARA EQUATION; GLOBAL EXISTENCE; SOBOLEV SPACES;
D O I
10.1007/s00030-011-0147-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher order KdV type equations are the equation replaced by a higher order derivative for the KdV equation. Recently, the local well-posedness result for these equations on torus have been given by Gorsky and Himonas (Math. Comput. Simul. 80:173-183, 2009). We extend this result by improving a bilinear estimate used in the Fourier restriction norm method.
引用
收藏
页码:677 / 693
页数:17
相关论文
共 50 条
  • [1] Local well-posedness for the periodic higher order KdV type equations
    Hiroyuki Hirayama
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 677 - 693
  • [2] Local Well-Posedness of Periodic Fifth-Order KdV-Type Equations
    Yi Hu
    Xiaochun Li
    The Journal of Geometric Analysis, 2015, 25 : 709 - 739
  • [3] Local Well-Posedness of Periodic Fifth-Order KdV-Type Equations
    Hu, Yi
    Li, Xiaochun
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 709 - 739
  • [4] WELL-POSEDNESS OF KDV TYPE EQUATIONS
    Carvajal, Xavier
    Panthee, Mahendra
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [5] Local well-posedness for the fifth-order KdV equations on T
    Kwak, Chulkwang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) : 7683 - 7737
  • [6] SHARP LOCAL WELL-POSEDNESS OF KDV TYPE EQUATIONS WITH DISSIPATIVE PERTURBATIONS
    Carvajal, Xavier
    Panthee, Mahendra
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (03) : 571 - 594
  • [7] Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition
    Kato, Takamori
    Tsugawa, Kotaro
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (03):
  • [8] LOCAL WELL-POSEDNESS FOR A HIGHER ORDER BOUSSINESQ TYPE EQUATION
    Zhong, Long
    Li, Shenghao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [9] LARGE DATA LOCAL WELL-POSEDNESS FOR A CLASS OF KDV-TYPE EQUATIONS
    Harrop-Griffiths, Benjamin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 755 - 773
  • [10] LOCAL WELL-POSEDNESS OF THE FIFTH-ORDER KDV-TYPE EQUATIONS ON THE HALF-LINE
    Cavalcante, Marcio
    Kwak, Chulkwang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2607 - 2661