Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues

被引:2
|
作者
Charles, Zachary B. [1 ]
Farber, Miriam [2 ]
Johnson, Charles R. [3 ]
Kennedy-Shaffer, Lee [4 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Adjacency matrix; Eigenvalues; Inertia; Laplacian matrix; Ramsey numbers; GRAPHS;
D O I
10.1016/j.disc.2013.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k) is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16 respectively. In addition, we prove that for all k >= 5, R(k, k + 1) >= NPO(k) > T-k, in which R(k, k + 1) is the Ramsey number for k and k + 1, and T-k is the kth triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kth largest eigenvalue is bounded from below the NPO(k)th largest degree, which generalizes some prior results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条