Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues

被引:2
|
作者
Charles, Zachary B. [1 ]
Farber, Miriam [2 ]
Johnson, Charles R. [3 ]
Kennedy-Shaffer, Lee [4 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Adjacency matrix; Eigenvalues; Inertia; Laplacian matrix; Ramsey numbers; GRAPHS;
D O I
10.1016/j.disc.2013.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let NPO(k) be the smallest number n such that the adjacency matrix of any undirected graph with n vertices or more has at least k nonpositive eigenvalues. We show that NPO(k) is well-defined and prove that the values of NPO(k) for k = 1, 2, 3, 4, 5 are 1, 3, 6, 10, 16 respectively. In addition, we prove that for all k >= 5, R(k, k + 1) >= NPO(k) > T-k, in which R(k, k + 1) is the Ramsey number for k and k + 1, and T-k is the kth triangular number. This implies new lower bounds for eigenvalues of Laplacian matrices: the kth largest eigenvalue is bounded from below the NPO(k)th largest degree, which generalizes some prior results. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1451
页数:11
相关论文
共 50 条
  • [21] On bounds of matrix eigenvalues
    Chen, Jinhai
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04): : 723 - 726
  • [22] On Eigenvalues of Hermitian-Adjacency Matrix
    Babarinsa, Olayiwola
    Sofi, Azfi Zaidi Mohammad
    Ibrahim, Mohd Asrul Hery
    Kamarulhaili, Hailiza
    Bashir, Dial
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (02): : 215 - 220
  • [23] Bounds on normalized Laplacian eigenvalues of graphs
    Jianxi Li
    Ji-Ming Guo
    Wai Chee Shiu
    Journal of Inequalities and Applications, 2014
  • [24] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [25] BOUNDS FOR RATIOS OF EIGENVALUES OF THE DIRICHLET LAPLACIAN
    ASHBAUGH, MS
    BENGURIA, RD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (01) : 145 - 150
  • [26] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    Acta Mathematica Sinica, 2004, 20 : 803 - 806
  • [27] MAJORIZATION BOUNDS FOR SIGNLESS LAPLACIAN EIGENVALUES
    Maden, A. Dilek
    Cevik, A. Sinan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 781 - 794
  • [28] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng LI Yong Liang PAN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (05) : 803 - 806
  • [29] About Bounds for Eigenvalues of the Laplacian with Density
    Ndiaye, Aissatou Mossele
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [30] Bounds on normalized Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,