Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation

被引:3
|
作者
Li, Zhiyuan [1 ]
Cheng, Xing [2 ]
Liu, Yikan [3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shangdong, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[3] Hokkaido Univ, Res Inst Elect Sci, Kita Ward, N127W7, Sapporo, Hokkaido 0600812, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2020年 / 24卷 / 04期
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
multi-term time-fractional diffusion equation; inverse source problem; Fredholm alternative; DISPERSION;
D O I
10.11650/tjm/191103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with an inverse source problem for the multi-term time-fractional diffusion equation with a diffusion parameter by using final overdetermination. On the basis of analytic Fredholm theory, a generic well-posedness of the inverse source problem in some suitable function space is proved.
引用
收藏
页码:1005 / 1020
页数:16
相关论文
共 50 条
  • [41] A Fractional-order Quasi-reversibility Method to a Backward Problem for the Multi-term Time-fractional Diffusion Equation
    Sun, Liangliang
    Wang, Yuxin
    Chang, Maoli
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1185 - 1210
  • [42] An inverse source problem of a semilinear time-fractional reaction-diffusion equation
    Faizi, R.
    Atmania, R.
    APPLICABLE ANALYSIS, 2023, 102 (11) : 2939 - 2959
  • [43] Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation
    Ma, Yong-Ki
    Prakash, P.
    Deiveegan, A.
    CHAOS SOLITONS & FRACTALS, 2018, 108 : 39 - 48
  • [44] Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions
    Ismailov, Mansur I.
    Cicek, Muhammed
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4891 - 4899
  • [45] Identification of an inverse source problem for time-fractional diffusion equation with random noise
    Tran Ngoc Thach
    Tuan Nguyen Huy
    Pham Thi Minh Tam
    Mach Nguyet Minh
    Nguyen Huu Can
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 204 - 218
  • [46] The inverse source problem for time-fractional diffusion equation: stability analysis and regularization
    Yang, Fan
    Fu, Chu-Li
    Li, Xiao-Xiao
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2015, 23 (06) : 969 - 996
  • [47] INVERSE COEFFICIENT PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Durdiev, D. K.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 44 - 54
  • [48] Conditional Well-Posedness for an Inverse Source Problem in the Diffusion Equation Using the Variational Adjoint Method
    Sun, Chunlong
    Liu, Qian
    Li, Gongsheng
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [49] AN INVERSE TIME-DEPENDENT SOURCE PROBLEM FOR A TIME-FRACTIONAL DIFFUSION EQUATION WITH NONLOCAL
    Mihoubi, Farid
    Nouiri, Brahim
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [50] Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation
    Sun, Liangliang
    Zhang, Yun
    Wei, Ting
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 228 - 245