Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation

被引:3
|
作者
Li, Zhiyuan [1 ]
Cheng, Xing [2 ]
Liu, Yikan [3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shangdong, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[3] Hokkaido Univ, Res Inst Elect Sci, Kita Ward, N127W7, Sapporo, Hokkaido 0600812, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2020年 / 24卷 / 04期
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
multi-term time-fractional diffusion equation; inverse source problem; Fredholm alternative; DISPERSION;
D O I
10.11650/tjm/191103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with an inverse source problem for the multi-term time-fractional diffusion equation with a diffusion parameter by using final overdetermination. On the basis of analytic Fredholm theory, a generic well-posedness of the inverse source problem in some suitable function space is proved.
引用
收藏
页码:1005 / 1020
页数:16
相关论文
共 50 条
  • [31] Inverse Problem for a Multi-Term Fractional Differential Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    Fractional Calculus and Applied Analysis, 2020, 23 : 799 - 821
  • [32] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [33] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [34] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [35] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [36] An α-robust finite element method for a multi-term time-fractional diffusion problem
    Huang, Chaobao
    Stynes, Martin
    Chen, Hu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [37] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [38] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [39] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [40] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82