A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
|
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [41] A full discretization of a time-dependent closed-loop geothermal system by a two-grid scheme?
    Gao, Xinyue
    Qin, Yi
    Li, Jian
    Chen, Zhangxin
    RESULTS IN APPLIED MATHEMATICS, 2022, 16
  • [42] H2-Conforming Methods and Two-Grid Discretizations for the Elastic Transmission Eigenvalue Problem
    Yang, Yidu
    Han, Jiayu
    Bi, Hai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (04) : 1366 - 1388
  • [43] THE NONCONFORMING CROUZEIX-RAVIART ELEMENT APPROXIMATION AND TWO-GRID DISCRETIZATIONS FOR THE ELASTIC EIGENVALUE PROBLEM*
    Bi, Hai
    Zhang, Xuqing
    Yang, Yidu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1041 - 1063
  • [44] THE TWO-GRID AND MULTIGRID DISCRETIZATIONS OF THE C0IPG METHOD FOR BIHARMONIC EIGENVALUE PROBLEM
    Li, Hao
    Bi, Hai
    Yang, Yidu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1775 - 1789
  • [45] Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem
    Xu, Fei
    Chen, Liu
    Huang, Qiumei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (06) : 2899 - 2920
  • [46] A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (07) : 1412 - 1430
  • [47] TWO-GRID FINITE ELEMENT DISCRETIZATION SCHEMES BASED ON SHIFTED-INVERSE POWER METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS
    Yang, Yidu
    Bi, Hai
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1602 - 1624
  • [48] Two-grid methods for a class of nonlinear elliptic eigenvalue problems
    Cances, Eric
    Chakir, Rachida
    He, Lianhua
    Maday, Yvon
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 605 - 645
  • [49] A Two-Grid Binary Level Set Method for Eigenvalue Optimization
    Jing Zhang
    Shengfeng Zhu
    Chunxiao Liu
    Xiaoqin Shen
    Journal of Scientific Computing, 2021, 89
  • [50] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410