A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
|
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [31] Two-grid discretization techniques for linear and nonlinear PDEs
    Xu, JC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 1759 - 1777
  • [32] Two-grid discretization schemes for nonlinear Schrodinger equations
    Chien, C. -S.
    Huang, H. -T.
    Jeng, B. -W.
    Li, Z. -C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 549 - 571
  • [33] Analysis of two-grid discretization scheme for semilinear hyperbolic equations by mixed finite element methods
    Wang, Keyan
    Chen, Yanping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (09) : 3370 - 3391
  • [34] A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme
    Abboud, Hyam
    Sayah, Toni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01): : 141 - 174
  • [35] Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
    Feng, Xinlong
    Weng, Zhifeng
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2014, 59 (06) : 615 - 630
  • [36] Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
    Xinlong Feng
    Zhifeng Weng
    Hehu Xie
    Applications of Mathematics, 2014, 59 : 615 - 630
  • [37] Two-Grid Discretization Scheme for Nonlinear Reaction Diffusion Equation by Mixed Finite Element Methods
    Chen, Luoping
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (02) : 203 - 219
  • [38] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Guo, Hailong
    Zhang, Zhimin
    Zhao, Ren
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 125 - 148
  • [39] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Hailong Guo
    Zhimin Zhang
    Ren Zhao
    Journal of Scientific Computing, 2017, 70 : 125 - 148
  • [40] A NEW PARALLEL FINITE ELEMENT ALGORITHM BASED ON TWO-GRID DISCRETIZATION FOR THE GENERALIZED STOKES PROBLEM
    Shang, Yueqiang
    He, Yinnian
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 676 - 688