A 3D Point Correspondences Uncertainty Aware RGB-D SLAM System

被引:0
|
作者
Pei, Fujun [1 ,2 ]
Zhou, Zhongxiang [1 ,2 ]
Zhu, Mingjun [1 ,2 ]
Zhao, Ning [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
关键词
SLAM; GMM; LMedS; Chi-Square distribution;
D O I
10.1109/ccdc.2019.8832963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, much research has been done on RGB-D simultaneous localization and mapping (SLAM) system. Mismatching and depth measurement uncertainty are key factors affecting the accuracy of RGB-D SLAM algorithms. Given that, we propose a 3D point correspondences uncertainty aware SLAM system. Firstly, we conduct ORB feature extraction and matching. Secondly. 3D positions of those pair points are reconstructed by combing depth information with Gaussian Mixture Model (GMM) and outliers are rejected and the initial guess of camera motion can be provided based on LMedS. Under the assumption of Chi-Square distribution, the motion results are further optimized by using Mahalanobis distance and Chi-Square test. Besides, the camera motion trajectory is globally optimized by pose graph. Finally, experiment results prove the proposed method can improve the accuracy of localization and mapping.
引用
收藏
页码:1623 / 1627
页数:5
相关论文
共 50 条
  • [11] Modeling spatial uncertainty of point features in feature-based RGB-D SLAM
    Dominik Belter
    Michał Nowicki
    Piotr Skrzypczyński
    Machine Vision and Applications, 2018, 29 : 827 - 844
  • [12] RGB-D SLAM综述
    王旒军
    陈家斌
    余欢
    朱汇申
    导航定位与授时, 2017, 4 (06) : 9 - 18
  • [13] GPU-Based Real-Time RGB-D 3D SLAM
    Lee, Donghwa
    Kim, Hyongjin
    Myung, Hyun
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 46 - 48
  • [14] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
    Keetha, Nikhil
    Karhade, Jay
    Jatavallabhula, Krishna Murthy
    Yang, Gengshan
    Scherer, Sebastian
    Ramanan, Deva
    Luiten, Jonathon
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21357 - 21366
  • [15] RGB-D SLAM in Dynamic Environments Using Point Correlations
    Dai, Weichen
    Zhang, Yu
    Li, Ping
    Fang, Zheng
    Scherer, Sebastian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 373 - 389
  • [16] DNA-SLAM: Dense Noise Aware SLAM for ToF RGB-D Cameras
    Wasenmueller, Oliver
    Ansari, Mohammad Dawud
    Stricker, Didier
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 613 - 629
  • [17] NIS-SLAM: Neural Implicit Semantic RGB-D SLAM for 3D Consistent Scene Understanding
    Zhai, Hongjia
    Huang, Gan
    Hu, Qirui
    Li, Guanglin
    Bao, Hujun
    Zhang, Guofeng
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (11) : 7129 - 7139
  • [18] RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information
    Di, Kaichang
    Zhao, Qiang
    Wan, Wenhui
    Wang, Yexin
    Gao, Yunjun
    SENSORS, 2016, 16 (08)
  • [19] Survey and Evaluation of RGB-D SLAM
    Zhang, Shishun
    Zheng, Longyu
    Tao, Wenbing
    IEEE ACCESS, 2021, 9 : 21367 - 21387
  • [20] Visual SLAM with RGB-D Cameras
    Jin, Qiongyao
    Liu, Yungang
    Man, Yongchao
    Li, Fengzhong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4072 - 4077