Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

被引:1
|
作者
Leon, Madeleine [1 ]
Escalante-Ramirez, Boris [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ingn Elect, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Procesamiento Senales, Mexico City, DF, Mexico
关键词
Osteoarthritis; Magnetic resonance images; Hierarchical active shape models; wavelet transform; Hermite transform; OSTEOARTHRITIS; VALIDATION; REPRESENTATION;
D O I
10.1117/12.2035534
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16-MRI of knee and tested with leave-one-out method.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Knee Cartilage Estimation Based on Knee Bone Geometry Using Posterior Shape Model
    Chen, Hao
    Tan, Tao
    Kang, Yan
    Sun, Yue
    Xie, Hui
    Wang, Xinye
    Verdonschot, Nico
    IEEE SENSORS JOURNAL, 2024, 24 (19) : 30600 - 30607
  • [42] Multi-resolution Shape-Based Image Retrieval Using Ridgelet Transform
    Mustaffa, Mas Rina
    Ahmad, Fatimah
    Doraisamy, Shyamala
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 112 - 123
  • [43] An improved multi-resolution hierarchical classification method based on robust segmentation for filtering ALS point clouds
    Chen, Chuanfa
    Li, Yanyan
    Yan, Changqing
    Dai, Honglei
    Liu, Guolin
    Guo, Jinyun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (04) : 950 - 968
  • [44] Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme
    Folkesson, J
    Dam, E
    Olsen, OF
    Pettersen, P
    Christiansen, C
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 327 - 334
  • [45] Automated Segmentation of Lung Field in HRCT Images Using Active Shape Model
    Agarwala, Sunita
    Nandi, Debashis
    Kumar, Abhishek
    Dhara, Ashis Kumar
    Thakur, Sumitra Basu
    Sadhu, Anup
    Bhadra, Ashok Kumar
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2516 - 2520
  • [46] Segmentation of the right ventricle in MRI images using a dual active shape model
    El-Rewaidy, Hossam
    Ibrahim, El-Sayed
    Fahmy, Ahmed S.
    IET IMAGE PROCESSING, 2016, 10 (10) : 717 - 723
  • [47] Active shape model based segmentation and tracking of facial regions in color images
    Kwolek, Bogdan
    IMAGE ANALYSIS AND RECOGNITION, PT 1, 2006, 4141 : 295 - 306
  • [48] Active shape model based segmentation of abdominal aortic aneurysms in CTA images
    de Bruijne, M
    van Ginneken, B
    Niessen, WJ
    Maintz, JBA
    Viergever, MA
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 463 - 474
  • [49] A Shape Prior-Based Active Contour Model for Automatic Images Segmentation
    Jiang, Xiaoliang
    Jiang, Jinyun
    IEEE ACCESS, 2020, 8 : 200541 - 200550
  • [50] Segmentation Method for Cardiac Region in CT Images Based on Active Shape Model
    Takahashi, Hiroki
    Komatsu, Masafumi
    Kim, Hyoungseop
    Tan, Joo Kooi
    Ishikawa, Seiji
    Yamamoto, Akiyoshi
    INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2010), 2010, : 2074 - 2077