Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

被引:1
|
作者
Leon, Madeleine [1 ]
Escalante-Ramirez, Boris [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ingn Elect, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Procesamiento Senales, Mexico City, DF, Mexico
关键词
Osteoarthritis; Magnetic resonance images; Hierarchical active shape models; wavelet transform; Hermite transform; OSTEOARTHRITIS; VALIDATION; REPRESENTATION;
D O I
10.1117/12.2035534
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16-MRI of knee and tested with leave-one-out method.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Image-fusion-based multi-resolution active contour model
    Zhu, Guang
    Guo, Shu-Xu
    OPTIK, 2014, 125 (17): : 4955 - 4957
  • [32] FULLY-AUTOMATED CARTILAGE SEGMENTATION FROM MAGNETIC RESONANCE IMAGES OF THE KNEE USING ATLAS AND GRAPH-CUT ALGORITHMS
    Lee, J. -G.
    Gumus, S.
    Kwoh, K. C.
    Bae, K. T.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S238 - S239
  • [33] Development of a rapid knee cartilage damage quantification method using magnetic resonance images
    Zhang, Ming
    Driban, Jeffrey B.
    Price, Lori Lyn
    Harper, Daniel
    Lo, Grace H.
    Miller, Eric
    Ward, Robert J.
    McAlindon, Timothy E.
    BMC MUSCULOSKELETAL DISORDERS, 2014, 15
  • [34] Development of a rapid knee cartilage damage quantification method using magnetic resonance images
    Ming Zhang
    Jeffrey B Driban
    Lori Lyn Price
    Daniel Harper
    Grace H Lo
    Eric Miller
    Robert J Ward
    Timothy E McAlindon
    BMC Musculoskeletal Disorders, 15
  • [35] Multi-Atlas-Based Bone Segmentation of the Lower Extremity Using Magnetic Resonance Images
    Jung, Y.
    Simonsen, M. B.
    Petersen, E. T.
    Stilling, M.
    Andersen, M. S.
    MEDICAL PHYSICS, 2024, 51 (10) : 7829 - 7830
  • [36] Brain tumour segmentation from magnetic resonance images using improved FCM and active contour model
    Perumal, Nagaraja
    Thiruvenkadam, Kalaiselvi
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 39 (02) : 188 - 211
  • [37] Brain tumor segmentation using river formation dynamics and active contour model in magnetic resonance images
    Jyotika Pruthi
    Shaveta Arora
    Kavita Khanna
    Neural Computing and Applications, 2022, 34 : 11807 - 11816
  • [38] Brain tumor segmentation using river formation dynamics and active contour model in magnetic resonance images
    Pruthi, Jyotika
    Arora, Shaveta
    Khanna, Kavita
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 11807 - 11816
  • [39] Multi-resolution shape-based image retrieval using Ridgelet transform
    Mustaffa, Mas Rina
    Ahmad, Fatimah
    Doraisamy, Shyamala
    Mustaffa, Mas Rina (MasRina@upm.edu.my), 1600, Springer Verlag (8870): : 112 - 123
  • [40] Multi-modality hierarchical fusion network for lumbar spine segmentation with magnetic resonance images
    Yan, Han
    Zhang, Guangtao
    Cui, Wei
    Yu, Zhuliang
    CONTROL THEORY AND TECHNOLOGY, 2024, 22 (04) : 612 - 622