A combined linear and nonlinear preconditioning technique for incompressible Navier-Stokes equations

被引:0
|
作者
Hwang, FN [1 ]
Cai, XC [1 ]
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new two-level nonlinear additive Schwarz preconditioned inexact Newton algorithm (ASPIN). The two-level nonlinear preconditioner combines a local nonlinear additive Schwarz preconditioner and a global linear coarse preconditioner. Our parallel numerical results based on a lid-driven cavity incompressible flow problem show that the new two-level ASPIN is nearly scalable with respect to the number of processors if the coarse mesh size is fine enough.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [41] HHO Methods for the Incompressible Navier-Stokes and the Incompressible Euler Equations
    Lorenzo Botti
    Francesco Carlo Massa
    Journal of Scientific Computing, 2022, 92
  • [42] HHO Methods for the Incompressible Navier-Stokes and the Incompressible Euler Equations
    Botti, Lorenzo
    Massa, Francesco Carlo
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [43] The spatial operator in the incompressible Navier-Stokes, Oseen and Stokes equations
    Nordstrom, Jan
    Lauren, Fredrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [44] Convergence of the Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Li, Fucai
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [45] A nonlinear multigrid method for the three-dimensional incompressible Navier-Stokes equations
    Drikakis, D
    Iliev, OP
    Vassileva, DP
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) : 301 - 321
  • [46] A Nonlinear Multigrid Method for the Three-Dimensional Incompressible Navier-Stokes Equations
    Department of Mechanical Engineering, UMIST, P.O. Box 88, Manchester M60 1QD, United Kingdom
    不详
    J. Comput. Phys., 1 (301-321):
  • [47] MULTI-GRID TECHNIQUE FOR THE SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS.
    Ghia, K.N.
    Ghia, U.
    1984, Pineridge Press (Recent Adv in Numer Methods in Fluids, v 3), Swansea, Wales
  • [48] Nonlinear control of Navier-Stokes equations
    Christofides, PD
    Armaou, A
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 1355 - 1359
  • [49] Nonlinear Instability for the Navier-Stokes Equations
    Susan Friedlander
    Nataša Pavlović
    Roman Shvydkoy
    Communications in Mathematical Physics, 2006, 264 : 335 - 347
  • [50] 2-STAGE PRESSURE CORRECTION TECHNIQUE FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    BENTSON, J
    VRADIS, G
    AIAA JOURNAL, 1990, 28 (07) : 1155 - 1156