A combined linear and nonlinear preconditioning technique for incompressible Navier-Stokes equations

被引:0
|
作者
Hwang, FN [1 ]
Cai, XC [1 ]
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new two-level nonlinear additive Schwarz preconditioned inexact Newton algorithm (ASPIN). The two-level nonlinear preconditioner combines a local nonlinear additive Schwarz preconditioner and a global linear coarse preconditioner. Our parallel numerical results based on a lid-driven cavity incompressible flow problem show that the new two-level ASPIN is nearly scalable with respect to the number of processors if the coarse mesh size is fine enough.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条
  • [31] A Splitting Preconditioner for the Incompressible Navier-Stokes Equations
    Hu, Ze-Jun
    Huang, Ting-Zhu
    Tan, Ning-Bo
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (05) : 612 - 630
  • [32] Newton linearization of the incompressible Navier-Stokes equations
    Sheu, TWH
    Lin, RK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (03) : 297 - 312
  • [33] Spectral properties of the incompressible Navier-Stokes equations
    Lauren, Fredrik
    Nordstrom, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [34] Analyticity of the inhomogeneous incompressible Navier-Stokes equations
    Bae, Hantaek
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 200 - 206
  • [35] Stochastic nonhomogeneous incompressible Navier-Stokes equations
    Cutland, Nigel J.
    Enright, Brendan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) : 140 - 170
  • [36] Projection methods for the incompressible Navier-Stokes equations
    Zhang Qing-Hai
    Li Yang
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [37] A multigrid algorithm for the incompressible Navier-Stokes equations
    Swanson, RC
    Thomas, JL
    Roberts, TW
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2141 - 2144
  • [38] A Chimera method for the incompressible Navier-Stokes equations
    Houzeaux, G.
    Eguzkitza, B.
    Aubry, R.
    Owen, H.
    Vazquez, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (03) : 155 - 183
  • [39] MULTILEVEL BDDC FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Hanek, Martin
    Sistek, Jakub
    Burda, Pavel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : C359 - C383
  • [40] Algebraic splitting for incompressible Navier-Stokes equations
    Henriksen, MO
    Holmen, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 438 - 453