Simultaneous image fusion and denoising by using fractional-order gradient information

被引:29
|
作者
Mei, Jin-Jin [1 ,2 ]
Dong, Yiqiu [3 ,4 ]
Huang, Ting-Zhu [2 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
Image fusion and denoising; Alternating direction method of multiplier; Inverse problem; Fractional-order derivative; Structure tensor; MULTIPLICATIVE NOISE; PERFORMANCE; ALGORITHM; REMOVAL;
D O I
10.1016/j.cam.2018.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image fusion and denoising are significant in image processing because of the availability of multi-sensor and the presence of the noise. The first-order and second-order gradient information have been effectively applied to deal with fusing the noise-free source images. In this paper, we utilize the fractional-order derivatives to represent image features, and propose two new convex variational models for fusing noisy source images. Furthermore, we apply an alternating direction method of multiplier (ADMM) to solve the minimization problems in the proposed models. Numerical experiments show that the proposed methods outperform the conventional total variation methods for simultaneously fusing and denoising. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条
  • [41] A tensor voting based fractional-order image denoising model and its numerical algorithm
    Han, Huan
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 133 - 144
  • [42] Multi - source Information Fusion Image Denoising Method Based on Fractional Modeling
    Tao Pingping
    Wen, Chenglin
    Feng, Xiaoliang
    Yan, Dong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7282 - 7286
  • [43] A Fractional-Order Primal-Dual Denoising Algorithm
    Tian, Dan
    Li, Dapeng
    Zhang, Yingxin
    PROCEEDINGS OF THE 2015 ASIA-PACIFIC ENERGY EQUIPMENT ENGINEERING RESEARCH CONFERENCE (AP3ER 2015), 2015, 9 : 457 - 460
  • [44] Fractional-order total variation for improving image fusion based on saliency map
    Wang, Qiaolu
    Gao, Zhisheng
    Xie, Chunzhi
    Chen, Gongping
    Luo, Qingqing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (05) : 991 - 999
  • [45] Fractional-Order Colour Image Processing
    Henriques, Manuel
    Valerio, Duarte
    Gordo, Paulo
    Melicio, Rui
    MATHEMATICS, 2021, 9 (05) : 1 - 15
  • [46] Fractional-order total variation for improving image fusion based on saliency map
    Qiaolu Wang
    Zhisheng Gao
    Chunzhi Xie
    Gongping Chen
    Qingqing Luo
    Signal, Image and Video Processing, 2020, 14 : 991 - 999
  • [47] Image deblurring using adaptive fractional-order shock filter
    Irandoust-pakchin, Safar
    Babapour, Shahab
    Lakestani, Mehrdad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4907 - 4922
  • [48] Image encryption using linear weighted fractional-order transform
    Zhao, Tieyu
    Yuan, Lin
    Chi, Yingying
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 77
  • [49] Variable fractional-order gradient descent method
    Li J.
    Shen Y.
    Yang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (09): : 43 - 47
  • [50] A new image encryption scheme based on fractional-order hyperchaotic system and multiple image fusion
    Gao, Xinyu
    Yu, Jiawu
    Banerjee, Santo
    Yan, Huizhen
    Mou, Jun
    SCIENTIFIC REPORTS, 2021, 11 (01)