Simultaneous image fusion and denoising by using fractional-order gradient information

被引:29
|
作者
Mei, Jin-Jin [1 ,2 ]
Dong, Yiqiu [3 ,4 ]
Huang, Ting-Zhu [2 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
Image fusion and denoising; Alternating direction method of multiplier; Inverse problem; Fractional-order derivative; Structure tensor; MULTIPLICATIVE NOISE; PERFORMANCE; ALGORITHM; REMOVAL;
D O I
10.1016/j.cam.2018.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image fusion and denoising are significant in image processing because of the availability of multi-sensor and the presence of the noise. The first-order and second-order gradient information have been effectively applied to deal with fusing the noise-free source images. In this paper, we utilize the fractional-order derivatives to represent image features, and propose two new convex variational models for fusing noisy source images. Furthermore, we apply an alternating direction method of multiplier (ADMM) to solve the minimization problems in the proposed models. Numerical experiments show that the proposed methods outperform the conventional total variation methods for simultaneously fusing and denoising. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条
  • [21] Fractional-order total variation image denoising based on proximity algorithm
    Chen, Dali
    Chen, YangQuan
    Xue, Dingyu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 537 - 545
  • [22] Adaptive Fractional-order Multi-scale Method for Image Denoising
    Zhang, Jun
    Wei, Zhihui
    Xiao, Liang
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 43 (01) : 39 - 49
  • [23] Adaptive Fractional-order Multi-scale Method for Image Denoising
    Jun Zhang
    Zhihui Wei
    Liang Xiao
    Journal of Mathematical Imaging and Vision, 2012, 43 : 39 - 49
  • [24] Multi-scale Fractional-Order Sparse Representation for Image Denoising
    Geng, Leilei
    Sun, Quansen
    Fu, Peng
    Yuan, Yunhao
    NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 462 - 470
  • [25] Generalized framework for the design of adaptive fractional-order masks for image denoising
    Gupta, Anmol
    Kumar, Sanjay
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [26] Fractional-order Differentiate Adaptive Algorithm for Identifying Coal Dust Image Denoising
    Wang Zheng
    Ma Xian-min
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 638 - 641
  • [27] Truncated Fractional-Order Total Variation for Image Denoising under Cauchy Noise
    Zhu, Jianguang
    Wei, Juan
    Lv, Haijun
    Hao, Binbin
    AXIOMS, 2022, 11 (03)
  • [28] Three fractional-order TV-L2 models for image denoising
    Chen, D. (chendali@ise.neu.edu.cn), 2013, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [29] A Hybrid Image Denoising Method Based on Integer and Fractional-Order Total Variation
    Fariba Kazemi Golbaghi
    Mansoor Rezghi
    M. R Eslahchi
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1803 - 1814
  • [30] Four-directional fractional-order total variation regularization for image denoising
    Wu, Linna
    Chen, Yingpin
    Jin, Jiaquan
    Du, Hongwei
    Qiu, Bensheng
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (05)