Simultaneous image fusion and denoising by using fractional-order gradient information

被引:29
|
作者
Mei, Jin-Jin [1 ,2 ]
Dong, Yiqiu [3 ,4 ]
Huang, Ting-Zhu [2 ]
机构
[1] Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
Image fusion and denoising; Alternating direction method of multiplier; Inverse problem; Fractional-order derivative; Structure tensor; MULTIPLICATIVE NOISE; PERFORMANCE; ALGORITHM; REMOVAL;
D O I
10.1016/j.cam.2018.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Image fusion and denoising are significant in image processing because of the availability of multi-sensor and the presence of the noise. The first-order and second-order gradient information have been effectively applied to deal with fusing the noise-free source images. In this paper, we utilize the fractional-order derivatives to represent image features, and propose two new convex variational models for fusing noisy source images. Furthermore, we apply an alternating direction method of multiplier (ADMM) to solve the minimization problems in the proposed models. Numerical experiments show that the proposed methods outperform the conventional total variation methods for simultaneously fusing and denoising. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条
  • [1] Fractional-order Sparse Representation for Image Denoising
    Geng, Leilei
    Ji, Zexuan
    Yuan, Yunhao
    Yin, Yilong
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 555 - 563
  • [2] Fractional-order Sparse Representation for Image Denoising
    Leilei Geng
    Zexuan Ji
    Yunhao Yuan
    Yilong Yin
    IEEE/CAAJournalofAutomaticaSinica, 2018, 5 (02) : 555 - 563
  • [3] Fractional-order anisotropic diffusion for image denoising
    Bai, Jian
    Feng, Xiang-Chu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) : 2492 - 2502
  • [4] Image decomposition and denoising using fractional-order partial differential equations
    Bai, Jian
    Feng, Xiang-Chu
    IET IMAGE PROCESSING, 2020, 14 (14) : 3471 - 3480
  • [5] Image Motion Restoration Using Fractional-Order Gradient Prior
    Fu, Ying
    Wu, Xi
    Li, Xiaohua
    He, Kun
    Zhang, Yi
    Zhou, Jiliu
    INFORMATICA, 2015, 26 (04) : 621 - 634
  • [6] An improved fractional-order differentiation model for image denoising
    He, Ning
    Wang, Jin-Bao
    Zhang, Lu-Lu
    Lu, Ke
    SIGNAL PROCESSING, 2015, 112 : 180 - 188
  • [7] Low-Rank Estimation for Image Denoising Using Fractional-Order Gradient-Based Similarity Measure
    Shamsi, Zahid Hussain
    Kim, Dai-Gyoung
    Hussain, Mukhtar
    Sajawal, Rana Muhammad Bakhtawar Khan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (10) : 4946 - 4968
  • [8] Low-Rank Estimation for Image Denoising Using Fractional-Order Gradient-Based Similarity Measure
    Zahid Hussain Shamsi
    Dai-Gyoung Kim
    Mukhtar Hussain
    Rana Muhammad Bakhtawar Khan Sajawal
    Circuits, Systems, and Signal Processing, 2021, 40 : 4946 - 4968
  • [9] Fractional-Order Variational Image Fusion and Denoising Based on Data-Driven Tight Frame
    Zhao, Ru
    Liu, Jingjing
    MATHEMATICS, 2023, 11 (10)
  • [10] An Image Denoising Fractional-Order Model with Coupling of Fidelity Terms
    Zhao, Donghong
    Yu, Xinyao
    Liu, Haoyu
    International Journal of Network Security, 2023, 25 (05) : 879 - 892