Hilbert-Schmidt separability probabilities and noninformativity of priors

被引:11
|
作者
Slater, PB [1 ]
机构
[1] Univ Calif Santa Barbara, ISBER, Santa Barbara, CA 93106 USA
来源
关键词
D O I
10.1088/0305-4470/39/4/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b(1)) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (sigma(2)(1)) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B-alpha). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b(1), sigma(2)(1), alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-infinity < a < infinity) of Hilbert-Schmidt (HS) separability probabilities-in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b(q), sigma(2)(q), q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than a, and has simply q-invariant HS separability probabilities of 1/2 Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence, in this regard, that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.
引用
收藏
页码:913 / 931
页数:19
相关论文
共 50 条
  • [41] HILBERT-SCHMIDT PROJECTIONS IN BANACH SPACES
    PIETSCH, A
    MATHEMATISCHE NACHRICHTEN, 1968, 37 (3-4) : 237 - &
  • [42] Hilbert-Schmidt distance and entanglement witnessing
    Pandya, Palash
    Sakarya, Omer
    Wiesniak, Marcin
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [43] The Kernel Theorem of Hilbert-Schmidt operators
    Martínez-Morales, JL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) : 71 - 77
  • [44] HILBERT MODULES REVISITED - ORTHONORMAL BASES AND HILBERT-SCHMIDT OPERATORS
    CABRERA, M
    MARTINEZ, J
    RODRIGUEZ, A
    GLASGOW MATHEMATICAL JOURNAL, 1995, 37 : 45 - 54
  • [45] Measuring statistical dependence with Hilbert-Schmidt norms
    Gretton, A
    Bousquet, O
    Smola, A
    Schölkopf, B
    ALGORITHMIC LEARNING THEORY, 2005, 3734 : 63 - 77
  • [46] Robust Learning with the Hilbert-Schmidt Independence Criterion
    Greenfeld, Daniel
    Shalit, Uri
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [47] Sequence Alignment with the Hilbert-Schmidt Independence Criterion
    Campbell, Jordan
    Lewis, J. P.
    Seol, Yeongho
    PROCEEDINGS CVMP 2018: THE 15TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2018,
  • [48] A REMARK ON NORMAL DERIVATIONS OF HILBERT-SCHMIDT TYPE
    DUGGAL, BP
    MONATSHEFTE FUR MATHEMATIK, 1991, 112 (04): : 265 - 270
  • [49] THE HILBERT-SCHMIDT METHOD FOR NUCLEON DEUTERON SCATTERING
    MOLLER, K
    NARODETSKII, IM
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1984, 315 (03): : 325 - 332
  • [50] A Hilbert-Schmidt integral operator and the Weil distribution
    Xian-Jin Li
    Science China(Mathematics), 2023, 66 (01) : 91 - 114