Hilbert-Schmidt distance and entanglement witnessing

被引:16
|
作者
Pandya, Palash [1 ]
Sakarya, Omer [2 ]
Wiesniak, Marcin [1 ,3 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland
[2] Univ Gdansk, Fac Math Phys & Informat, Inst Informat, PL-80308 Gdansk, Poland
[3] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland
关键词
MIXED STATES; SEPARABILITY;
D O I
10.1103/PhysRevA.102.012409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gilbert proposed an algorithm for bounding the distance between a given point and a convex set. We apply the Gilbert's algorithm to get an upper bound on the Hilbert-Schmidt distance between a given state and the set of separable states. While Hilbert-Schmidt distance does not form a proper entanglement measure, it can nevertheless be useful for witnessing entanglement. We provide a few methods based on the Gilbert's algorithm that can reliably qualify a given state as strongly entangled or practically separable, while being computationally efficient. The method also outputs successively improved approximations to the closest separable state for the given state. We demonstrate the efficacy of the method with examples.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Entanglement measures and the Hilbert-Schmidt distance
    Ozawa, M
    PHYSICS LETTERS A, 2000, 268 (03) : 158 - 160
  • [2] Thermoelectric Transport Driven by the Hilbert-Schmidt Distance
    Oh, Chang-geun
    Kim, Kun Woo
    Rhim, Jun-Won
    ADVANCED SCIENCE, 2024, 11 (48)
  • [3] A new entanglement measure induced by the Hilbert-Schmidt norm
    Witte, C
    Trucks, M
    PHYSICS LETTERS A, 1999, 257 (1-2) : 14 - 20
  • [4] ON HILBERT-SCHMIDT COMPATIBILITY
    Potapov, Denis
    Skripka, Anna
    Sukochev, Fedor
    OPERATORS AND MATRICES, 2013, 7 (01): : 1 - 33
  • [5] Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed
    Jahromi, Hossein Rangani
    Mahdavipour, Kobra
    Shadfar, Mahshid Khazaei
    Lo Franco, Rosario
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [6] ON AN INEQUALITY OF HILBERT-SCHMIDT NORM
    DU, HK
    KEXUE TONGBAO, 1983, 28 (10): : 1429 - 1429
  • [7] HILBERT-SCHMIDT REPRESENTATIONS OF GROUPS
    BAGGETT, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 502 - &
  • [8] Nuclear and Hilbert-Schmidt Operators
    Prevot, Claudia
    Roeckner, Michael
    CONCISE COURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2007, 1905 : 109 - 113
  • [9] INDECOMPOSABLE HILBERT-SCHMIDT OPERATORS
    WEISS, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 172 - 176
  • [10] THE PROOF OF HILBERT-SCHMIDT THEOREMS
    SIEGMUNDSCHULTZE, R
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1986, 36 (03) : 251 - 270