Inverse Scattering Transform and Soliton Classification of Higher-Order Nonlinear Schrodinger-Maxwell-Bloch Equations

被引:20
|
作者
Li, Zhi-Qiang [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Peng, Wei-Qi [1 ,2 ]
Yang, Jin-Jie [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
higher-order nonlinear Schrodinger-Maxwell-Bloch equation; Riemann-Hilbert method; soliton solution; RIEMANN-HILBERT APPROACH; BOUNDARY VALUE-PROBLEMS; ERBIUM-DOPED FIBERS; OPTICAL SOLITONS; N-SOLITON; INTEGRABILITY; SYSTEM; DISPERSION;
D O I
10.1134/S004057792006001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate higher-order nonlinear Schrodinger-Maxwell-Bloch equations using the Riemann-Hilbert method. We perform a spectral analysis of the Lax pair and construct a Riemann-Hilbert problem according to the spectral analysis. As a result, we obtain three types of multisoliton solutions. Based on the analytic solution and with a choice of corresponding parameter values, we obtain solutions of the breather type and a bell-shaped solution and find an interesting phenomenon of the collision of two soliton solutions. We hope that these results can be useful in modeling the wave propagation of a nonlinear optical field in an erbium-doped fiber medium.
引用
收藏
页码:709 / 725
页数:17
相关论文
共 50 条
  • [31] Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations
    Karpman, VI
    PHYSICAL REVIEW E, 1996, 53 (02) : R1336 - R1339
  • [32] The higher-order nonlinear Schrodinger equation with non-zero boundary conditions: Robust inverse scattering transform, breathers, and rogons
    Chen, Shuyan
    Yan, Zhenya
    PHYSICS LETTERS A, 2019, 383 (29)
  • [33] Darboux transformation and soliton solutions for the generalized coupled variable-coefficient nonlinear Schrodinger-Maxwell-Bloch system with symbolic computation
    Guo, Rui
    Tian, Bo
    Lu, Xing
    Zhang, Hai-Qiang
    Liu, Wen-Jun
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (04) : 565 - 577
  • [34] Soliton solutions of higher-order generalized derivative nonlinear Schrodinger equation
    Bi, Jinbo
    Chen, Dengyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (07) : 1881 - 1887
  • [35] Non-existence of dark solitons in a nonlinear Schrodinger-Maxwell-Bloch fibre system
    Nakkeeran, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39): : 7007 - 7011
  • [36] Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrodinger-Maxwell-Bloch system with loss/gain driven by an external potential
    Rajan, M. S. Mani
    Mahalingam, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
  • [37] Higher-Order Localized Waves in Coupled Nonlinear Schrodinger Equations
    Wang Xin
    Yang Bo
    Chen Yong
    Yang Yun-Qing
    CHINESE PHYSICS LETTERS, 2014, 31 (09)
  • [38] Evolution of solitons described by higher-order nonlinear Schrodinger equations
    Karpman, VI
    PHYSICS LETTERS A, 1998, 244 (05) : 397 - 400
  • [39] Nanoptera in Higher-Order Nonlinear Schrodinger Equations: Effects of Discretization
    Moston-Duggan, Aaron J.
    Porter, Mason A.
    Lustri, Christopher J.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
  • [40] Inverse Scattering Transform and Solitons for Square Matrix Nonlinear Schrodinger Equations
    Prinari, Barbara
    Ortiz, Alyssa K.
    van der Mee, Cornelis
    Grabowski, Marek
    STUDIES IN APPLIED MATHEMATICS, 2018, 141 (03) : 308 - 352