Inverse Scattering Transform and Soliton Classification of Higher-Order Nonlinear Schrodinger-Maxwell-Bloch Equations

被引:20
|
作者
Li, Zhi-Qiang [1 ,2 ]
Tian, Shou-Fu [1 ,2 ]
Peng, Wei-Qi [1 ,2 ]
Yang, Jin-Jie [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Inst Math Phys, Xuzhou, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
higher-order nonlinear Schrodinger-Maxwell-Bloch equation; Riemann-Hilbert method; soliton solution; RIEMANN-HILBERT APPROACH; BOUNDARY VALUE-PROBLEMS; ERBIUM-DOPED FIBERS; OPTICAL SOLITONS; N-SOLITON; INTEGRABILITY; SYSTEM; DISPERSION;
D O I
10.1134/S004057792006001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate higher-order nonlinear Schrodinger-Maxwell-Bloch equations using the Riemann-Hilbert method. We perform a spectral analysis of the Lax pair and construct a Riemann-Hilbert problem according to the spectral analysis. As a result, we obtain three types of multisoliton solutions. Based on the analytic solution and with a choice of corresponding parameter values, we obtain solutions of the breather type and a bell-shaped solution and find an interesting phenomenon of the collision of two soliton solutions. We hope that these results can be useful in modeling the wave propagation of a nonlinear optical field in an erbium-doped fiber medium.
引用
收藏
页码:709 / 725
页数:17
相关论文
共 50 条
  • [21] New soliton solutions for the (2+1)-dimensional Schrodinger-Maxwell-Bloch equation
    Zhou, Run
    Hao, Hui-Qin
    Jia, Rong-Rong
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 409 - 418
  • [22] BOUND SOLITONS AND BREATHERS FOR THE GENERALIZED COUPLED NONLINEAR SCHRODINGER-MAXWELL-BLOCH SYSTEM
    Guo, Rui
    Hao, Hui-Qin
    Zhang, Ling-Ling
    MODERN PHYSICS LETTERS B, 2013, 27 (17):
  • [23] Exact soliton solutions for the higher-order nonlinear Schrodinger equation
    Li, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1225 - 1237
  • [25] INTEGRABILITY OF THE VECTOR NONLINEAR SCHRODINGER-MAXWELL-BLOCH EQUATION AND THE CAUCHY MATRIX APPROACH
    Zhou, Hui
    Huang, Yehui
    Yao, Yuqin
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (03) : 805 - 822
  • [26] Higher-order nonlinear Schrodinger equations with singular data
    Hayashi, Nakao
    Naumkin, Pavel I.
    Ogawa, Takayoshi
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) : 263 - 276
  • [27] Modulation instability in higher-order nonlinear Schrodinger equations
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    Chang, Wonkeun
    CHAOS, 2018, 28 (12)
  • [28] Conservation laws in higher-order nonlinear Schrodinger equations
    Kim, J
    Park, QH
    Shin, HJ
    PHYSICAL REVIEW E, 1998, 58 (05): : 6746 - 6751
  • [29] Solitons for the (2+1)-dimensional nonlinear Schrodinger-Maxwell-Bloch equations in an erbium-doped fibre
    Wu, Xiao-Yu
    Tian, Bo
    Zhen, Hui-Ling
    Sun, Wen-Rong
    Sun, Ya
    JOURNAL OF MODERN OPTICS, 2016, 63 (06) : 590 - 597
  • [30] Determinant representation of Darboux transformation for the (2+1)-dimensional nonlocal nonlinear Schrodinger-Maxwell-Bloch equations
    Song, Jiang-Yan
    Zhang, Chi-Ping
    Xiao, Yu
    OPTIK, 2021, 228