A note on h(x) - Fibonacci quaternion polynomials

被引:33
|
作者
Catarino, Paula [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, UTAD, P-5001801 Vila Real, Portugal
关键词
GENERALIZED FIBONACCI; K-FIBONACCI;
D O I
10.1016/j.chaos.2015.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce h(x) - Fibonacci quaternion polynomials that generalize the k - Fibonacci quaternion numbers, which in their turn are a generalization of the Fibonacci quaternion numbers. We also present a Binet-style formula, ordinary generating function and some basic identities for the h(x) - Fibonacci quaternion polynomial sequences. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] ON QUATERNION GAUSSIAN BRONZE FIBONACCI NUMBERS
    Catarino, Paula
    Ricardo, Sandra
    ANNALES MATHEMATICAE SILESIANAE, 2022, 36 (02) : 129 - 150
  • [32] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [33] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Wu, Zhengang
    Zhang, Wenpeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [34] Infinite sums for Fibonacci polynomials and Lucas polynomials
    Bing He
    Ruiming Zhang
    The Ramanujan Journal, 2019, 50 : 621 - 637
  • [35] The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials
    Zhengang Wu
    Wenpeng Zhang
    Journal of Inequalities and Applications, 2012
  • [36] Infinite sums for Fibonacci polynomials and Lucas polynomials
    He, Bing
    Zhang, Ruiming
    RAMANUJAN JOURNAL, 2019, 50 (03): : 621 - 637
  • [37] Note on irreducible polynomials over Fq[X]
    Sibih, Alanod M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (02): : 721 - 724
  • [38] ON THE Q ANALOGUE OF FIBONACCI AND LUCAS MATRICES AND FIBONACCI POLYNOMIALS
    Sahin, Adem
    UTILITAS MATHEMATICA, 2016, 100 : 113 - 125
  • [39] 2-Fibonacci polynomials in the family of Fibonacci numbers
    Ozkan, Engin
    Tastan, Merve
    Aydogdu, Ali
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 47 - 55
  • [40] Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers
    Ma, Yuankui
    Zhang, Wenpeng
    MATHEMATICS, 2018, 6 (12):