A note on h(x) - Fibonacci quaternion polynomials

被引:33
|
作者
Catarino, Paula [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, UTAD, P-5001801 Vila Real, Portugal
关键词
GENERALIZED FIBONACCI; K-FIBONACCI;
D O I
10.1016/j.chaos.2015.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce h(x) - Fibonacci quaternion polynomials that generalize the k - Fibonacci quaternion numbers, which in their turn are a generalization of the Fibonacci quaternion numbers. We also present a Binet-style formula, ordinary generating function and some basic identities for the h(x) - Fibonacci quaternion polynomial sequences. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Resultants of quaternion polynomials
    Zhao, Xiangui
    Zhang, Yang
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05): : 1304 - 1311
  • [22] Integrals of Fibonacci polynomials
    Furdui, Ovidiu
    FIBONACCI QUARTERLY, 2007, 45 (01): : 95 - 96
  • [23] Identities with Fibonacci polynomials
    Seiffert, HJ
    FIBONACCI QUARTERLY, 2003, 41 (02): : 189 - 191
  • [24] Supersymmetric Fibonacci polynomials
    Yamani, Hashim A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [25] The Fibonacci Polynomials in Rings
    Tasyurdu, Yasemin
    Deveci, Omur
    ARS COMBINATORIA, 2017, 133 : 355 - 366
  • [26] Matrices with Fibonacci polynomials
    Gauthier, N
    Gosselin, JR
    FIBONACCI QUARTERLY, 2003, 41 (02): : 191 - 192
  • [27] On the Roots of Fibonacci Polynomials
    Birol, Furkan
    Koruoglu, Ozden
    FILOMAT, 2022, 36 (12) : 4087 - 4097
  • [28] Distance Fibonacci Polynomials
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    SYMMETRY-BASEL, 2020, 12 (09):
  • [29] On Convolved Fibonacci Polynomials
    Abd-Elhameed, Waleed Mohamed
    Alqubori, Omar Mazen
    Napoli, Anna
    MATHEMATICS, 2025, 13 (01)
  • [30] Supersymmetric Fibonacci polynomials
    Hashim A. Yamani
    Analysis and Mathematical Physics, 2021, 11