Lightly-supervised Clustering Using Pairwise Constraint Propagation

被引:2
|
作者
Huang, Jianbin [1 ]
Sun, Heli [2 ]
机构
[1] Xidian Univ, Sch Software, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Comp Sci & Technol, Xian, Peoples R China
关键词
D O I
10.1109/ISKE.2008.4731033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on providing a high-quality semi-supervised clustering with small quantities of constraints. A Clustering method called CP-KMeans is proposed for propagating pairwise constraints to nearby instances using a Gaussian function. This method takes a few easily specified constraints, and propagates them to nearby pairs of points to constrain the local neighborhood Clustering with these propagated constraints can yield superior performance with fewer constraints than clustering with only the original user-specified constraints. The experimental results on several data sets show that CP-KMeans obtain high performance with fewer constraints compared with other two semi-supervised clustering algorithms.
引用
收藏
页码:765 / +
页数:2
相关论文
共 50 条
  • [41] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [42] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [43] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372
  • [44] Semi-supervised Clustering via Pairwise Constrained Optimal Graph
    Nie, Feiping
    Zhang, Han
    Wang, Rong
    Li, Xuelong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3160 - 3166
  • [45] Active semi-supervised spectral clustering based on pairwise constraints
    Wang, Na
    Li, Xia
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 172 - 176
  • [46] Clustering ECG heartbeat using improved semi-supervised affinity propagation
    Wang, Ludi
    Zhou, Xiaoguang
    Xing, Ying
    Yang, Mengke
    Zhang, Chi
    IET SOFTWARE, 2017, 11 (05) : 207 - 213
  • [47] Linear Semi-Supervised Dimensionality Reduction with Pairwise Constraint for Multiple Subclasses
    Tong, Bin
    Jia, Weifeng
    Ji, Yanli
    Suzuki, Einoshin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (03): : 812 - 820
  • [48] Semi-supervised Sparsity Pairwise Constraint Preserving Projections based on GA
    Qi, Mingming
    Xiang, Yang
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (03): : 1065 - 1075
  • [49] Wireless Propagation Multipaths Using Spectral Clustering and Three-Constraint Affinity Matrix Spectral Clustering
    Blanza, Jojo
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) : 1001 - 1011
  • [50] Pairwise constraint propagation via low-rank matrix recovery
    Fu Z.
    Computational Visual Media, 2015, 1 (03) : 211 - 220