Lightly-supervised Clustering Using Pairwise Constraint Propagation

被引:2
|
作者
Huang, Jianbin [1 ]
Sun, Heli [2 ]
机构
[1] Xidian Univ, Sch Software, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Comp Sci & Technol, Xian, Peoples R China
关键词
D O I
10.1109/ISKE.2008.4731033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on providing a high-quality semi-supervised clustering with small quantities of constraints. A Clustering method called CP-KMeans is proposed for propagating pairwise constraints to nearby instances using a Gaussian function. This method takes a few easily specified constraints, and propagates them to nearby pairs of points to constrain the local neighborhood Clustering with these propagated constraints can yield superior performance with fewer constraints than clustering with only the original user-specified constraints. The experimental results on several data sets show that CP-KMeans obtain high performance with fewer constraints compared with other two semi-supervised clustering algorithms.
引用
收藏
页码:765 / +
页数:2
相关论文
共 50 条
  • [21] Semi-supervised DenPeak Clustering with Pairwise Constraints
    Ren, Yazhou
    Hu, Xiaohui
    Shi, Ke
    Yu, Guoxian
    Yao, Dezhong
    Xu, Zenglin
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 837 - 850
  • [22] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    M. Leone Sumedha
    M. Weigt
    The European Physical Journal B, 2008, 66 : 125 - 135
  • [23] Unsupervised and semi-supervised clustering by message passing: soft-constraint affinity propagation
    Leone, M.
    Sumedha
    Weigt, M.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (01): : 125 - 135
  • [24] Pairwise Constraint Propagation With Dual Adversarial Manifold Regularization
    Jia, Yuheng
    Liu, Hui
    Hou, Junhui
    Kwong, Sam
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5575 - 5587
  • [25] Active Informative Pairwise Constraint Formulation Algorithm for Constraint-Based Clustering
    Zhong, Guoxiang
    Deng, Xiuqin
    Xu, Shengbing
    IEEE ACCESS, 2019, 7 : 81983 - 81993
  • [26] SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS
    Wacquet, Guillaume
    Hebert, Pierre-Alexandre
    Poisson, Emilie Caillault
    Hamad, Denis
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 72 - 81
  • [27] Face Clustering Using Semi-supervised Neighborhood Preserving Embedding with Pairwise Constraints
    Wang, Na
    Li, Xia
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1564 - 1568
  • [28] Constrained Clustering with Local Constraint Propagation
    He, Ping
    Xu, Xiaohua
    Chen, Ling
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 223 - 232
  • [29] Discriminative semi-supervised clustering analysis with pairwise constreints
    Yin, Xue-Song
    Hu, En-Liang
    Chen, Song-Can
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (11): : 2791 - 2802
  • [30] Effective semi-supervised graph clustering with pairwise constraints
    Chen, Jingwei
    Xie, Shiyu
    Yang, Hui
    Nie, Feiping
    INFORMATION SCIENCES, 2024, 681