Parameter estimation in stochastic scenario generation systems

被引:16
|
作者
Mulvey, JM
Rosenbaum, DP
Shetty, B [1 ]
机构
[1] Princeton Univ, Dept Civil Engn & Operat Res, Princeton, NJ 08544 USA
[2] Texas A&M Univ, Dept Informat & Operat Management, College Stn, TX 77843 USA
关键词
scenarios; finance; tabu search;
D O I
10.1016/S0377-2217(98)90323-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Scenario analysis offers an effective tool for addressing the stochastic elements in multi-period financial planning models. Critical to any scenario generation process is the estimation of the input parameters of the underlying stochastic model for economic factors. In this paper, we propose a new approach for estimation, known as the integrated parameter estimation (IPE). This approach combines the significant features of other well-known estimation techniques within a non-convex multiple objective optimization framework, with the objective weights controlling the relative importance of the features. We solve the non-convex optimization problem using adaptive memory programming - a variation of tabu search. Based on a short interest rate model using UK treasury rates from 1980 to 1995, the integrated approach compares favorably with maximum likelihood and the generalized method of moments. We also evaluate performance with Towers Perrin's CAP:Link scenario generation system. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 50 条
  • [31] Stochastic optimal linear parameter estimation and neural nets training in systems modeling
    Neto, Atair Rios
    Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, 1997, 19 (02): : 138 - 146
  • [32] State and parameter estimation of stochastic physical systems from uncertain and indirect measurements
    Jimenez, J. C.
    Yoshimoto, A.
    Miwakeichi, F.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (08):
  • [34] Identification of non-linear stochastic systems by state dependent parameter estimation
    Young, PC
    McKenna, P
    Bruun, J
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (18) : 1837 - 1857
  • [35] Parameter Estimation in Stochastic Differential Equations
    Weber, G. -W.
    Taylan, P.
    Goerguelue, Z. -K.
    Abd Rahman, H.
    Bahar, A.
    DYNAMICS, GAMES AND SCIENCE II, 2011, 2 : 703 - +
  • [36] On parameter estimation of partly observed bilinear discrete-time stochastic systems
    Malyarenko, A.
    Vasiliev, V.
    METRIKA, 2012, 75 (03) : 403 - 424
  • [37] Optimal Control and Stochastic Parameter Estimation
    Ngnepieba, Pierre
    Hussaini, M. Y.
    Debreu, Laurent
    MONTE CARLO METHODS AND APPLICATIONS, 2006, 12 (5-6): : 461 - 476
  • [38] State and Parameter Estimation for Stochastic Open Two-Level Quantum Systems
    Corcione, Emilio
    Tarin, Cristina
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2270 - 2275
  • [39] State and parameter estimation of stochastic physical systems from uncertain and indirect measurements
    J. C. Jimenez
    A. Yoshimoto
    F. Miwakeichi
    The European Physical Journal Plus, 136
  • [40] Numerical differentiation and parameter estimation in higher-order linear stochastic systems
    Univ of Kansas, Lawrence, United States
    IEEE Trans Autom Control, 4 (522-532):