Parameter estimation in stochastic scenario generation systems

被引:16
|
作者
Mulvey, JM
Rosenbaum, DP
Shetty, B [1 ]
机构
[1] Princeton Univ, Dept Civil Engn & Operat Res, Princeton, NJ 08544 USA
[2] Texas A&M Univ, Dept Informat & Operat Management, College Stn, TX 77843 USA
关键词
scenarios; finance; tabu search;
D O I
10.1016/S0377-2217(98)90323-X
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Scenario analysis offers an effective tool for addressing the stochastic elements in multi-period financial planning models. Critical to any scenario generation process is the estimation of the input parameters of the underlying stochastic model for economic factors. In this paper, we propose a new approach for estimation, known as the integrated parameter estimation (IPE). This approach combines the significant features of other well-known estimation techniques within a non-convex multiple objective optimization framework, with the objective weights controlling the relative importance of the features. We solve the non-convex optimization problem using adaptive memory programming - a variation of tabu search. Based on a short interest rate model using UK treasury rates from 1980 to 1995, the integrated approach compares favorably with maximum likelihood and the generalized method of moments. We also evaluate performance with Towers Perrin's CAP:Link scenario generation system. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:563 / 577
页数:15
相关论文
共 50 条
  • [21] Stochastic programming and scenario generation within a simulation framework: An information systems perspective
    Di Domenica, Nico
    Mitra, Gautam
    Valente, Patrick
    Birbilis, George
    DECISION SUPPORT SYSTEMS, 2007, 42 (04) : 2197 - 2218
  • [22] PARAMETER ESTIMATION FOR STOCHASTIC PROCESSES
    PITCHER, TS
    ACTA MATHEMATICA, 1964, 112 (1-2) : 1 - 40
  • [23] STOCHASTIC MULTICOMPARTMENTAL SYSTEMS - A COUNTING PROCESS APPROACH FOR PARAMETER-ESTIMATION
    CHIAROLLA, M
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1986, 4 (01) : 25 - 48
  • [24] How to Deal with Parameter Estimation in Continuous-Time Stochastic Systems
    Escobar, Jesica
    Gabriela Gallardo-Hernandez, Ana
    Angel Gonzalez-Olvera, Marcos
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (04) : 2338 - 2357
  • [25] Parameter estimation via homogenization for stochastic dynamical systems with oscillating coefficients
    Zhang, Xinyong
    Wang, Hui
    Zhang, Yanjie
    Lin, Haokun
    STOCHASTICS AND DYNAMICS, 2018, 18 (03)
  • [26] How to Deal with Parameter Estimation in Continuous-Time Stochastic Systems
    Jesica Escobar
    Ana Gabriela Gallardo-Hernandez
    Marcos Angel Gonzalez-Olvera
    Circuits, Systems, and Signal Processing, 2022, 41 : 2338 - 2357
  • [27] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2212 - A2238
  • [28] Joint state and parameter estimation for uncertain stochastic nonlinear polynomial systems
    Basin, Michael V.
    Loukianov, Alexander G.
    Hernandez-Gonzalez, Miguel
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (07) : 1200 - 1208
  • [29] ANN-based scenario generation methodology for stochastic variables of electric power systems
    Vagropoulos, Stylianos I.
    Kardakos, Evaggelos G.
    Simoglou, Christos K.
    Bakirtzis, Anastasios G.
    Catalao, Joao P. S.
    ELECTRIC POWER SYSTEMS RESEARCH, 2016, 134 : 9 - 18
  • [30] Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems
    Valderrama, Daniel Fernandez
    Alonso, Juan Ignacio Guerrero
    de Mora, Carlos Leon
    Robba, Michela
    ENERGIES, 2024, 17 (21)