Some Properties of the (p,q)-Fibonacci and (p,q)-Lucas Polynomials

被引:37
|
作者
Lee, GwangYeon [1 ]
Asci, Mustafa [2 ]
机构
[1] Hanseo Univ, Dept Math, Seosan 356706, Chungnam, South Korea
[2] Pamukkale Univ, Sci & Arts Fac, Dept Math, Denizli, Turkey
关键词
LINEAR ALGEBRA; FIBONACCI;
D O I
10.1155/2012/264842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called (p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordanmethodwe get factorizations of Pascal matrix involving (p,q)-Fibonacci polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] On (p, q)-Appell Polynomials
    Sadjang, P. Njionou
    ANALYSIS MATHEMATICA, 2019, 45 (03) : 583 - 598
  • [32] q-fibonacci polynomials
    Cigler, J
    FIBONACCI QUARTERLY, 2003, 41 (01): : 31 - 40
  • [33] NOVEL PROPERTIES OF FIBONACCI AND LUCAS POLYNOMIALS
    GALVEZ, FJ
    DEHESA, JS
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 97 (JAN) : 159 - 164
  • [34] PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    Agrawal, Garvita
    Teeth, Manjeet Singh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2022, 21 (3-4): : 175 - 188
  • [35] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [36] A key management scheme using (p, q)-lucas polynomials in wireless sensor network
    Gautam, Amit Kumar
    Kumar, Rakesh
    CHINA COMMUNICATIONS, 2021, 18 (11) : 210 - 228
  • [37] A Key Management Scheme Using (p, q)-Lucas Polynomials in Wireless Sensor Network
    Amit Kumar Gautam
    Rakesh Kumar
    China Communications, 2021, 18 (11) : 210 - 228
  • [38] On the (p, q)-Chebyshev Polynomials and Related Polynomials
    Kizilates, Can
    Tuglu, Naim
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (02)
  • [39] Some (p, q)-analogues of Apostol type numbers and polynomials
    Acikgoz, Mehmet
    Araci, Serkan
    Duran, Ugur
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 37 - 50
  • [40] A note on (p, q)-Bernstein polynomials and their applications based on (p, q)-calculus
    Agyuz, Erkan
    Acikgoz, Mehmet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,